Capillary cooling technology with forced-air cross ventilation: an eco-friendly onion storage technology
DOI:
https://doi.org/10.18011/bioeng.2025.v19.1308Keywords:
Forced Air Ventilation, Onion Storage, Physiological Weight Loss, Post-harvest losses, Total Soluble Solids (TSS)Abstract
The objective of this study was to develop a solar-powered forced air-ventilated onion storage system (FAVS) with capillary cooling technology and to compare the effectiveness of the system with other common onion storage practices. Onion is one of the economically important crops that suffer significant postharvest losses due to inadequate storage conditions. A FAVS unit (2300×1200×3400 mm) with a 3000 kg total capacity (1000 kg/layer) was designed and fabricated and compared with three conventional methods such as Traditional Storage (TDS), Net Sack Storage (SNS), and Jute Sack Storage (SJS). BARI Piaj-4 was kept in bulk condition for 120 days, and data of physiological weight loss (PWL), decay percentage, moisture content, total soluble solids (TSS), firmness, and fungal infection were measured at 30-day intervals. A 130-watt solar panel charges a battery that runs ten 6-watt exhaust fans all day. Side exhaust fans intake fresh air from outside to remove surface moisture from the onion as capillary action, while the exhaust fan on top sucks hot air from the FAVS system. The FAVS system outperformed, with the lowest decay (4.43%) and fungal infection (4.33%) compared to TDS (8.12% and 8.10%), SNS (8.80% and 8.90%), and SJS (9.27% and 9.37%). FAVS maintained the highest and most stable moisture content (75.37%), while physiological weight loss remained below 4%, which is significantly less than traditional methods (9%). Furthermore, the system showed minimum reductions in firmness (0.32%) and TSS (1.37%), indicating better quality storage. The findings support the adoption of FAVS as an effective and environmentally friendly alternative to traditional onion storage practices.
Downloads
References
Abdullah-Al, M., Islam, M. H., Husna, A., & Zereen, I. (2024). Revolutionizing onion preservation: A novel aerated storage approach. Archives of Agriculture and Environmental Science, 9(2), 329–335. https://doi.org/10.26832/24566632.2024.0902018
Adhikari, R. P., & Joshi, K. R. (2021). Post-harvest practices of horticultural crops in Nepal: Issues and management. Archives of Agriculture and Environmental Science, 6(2), 206–213. https://doi.org/10.26832/24566632.2021.0602015
Akinwotu, K. O., & Adeniran, H. A. (2025). Nutritional benefits, post-harvest challenges, and innovative preservation strategies of onions (Allium cepa L.): A comprehensive review. Food Science and Preservation, 32(3), 423–444. https://doi.org/10.11002/fsp.2025.32.3.423
Al-Gaadi, K. A., Zeyada, A. M., Tola, E., Alhamdan, A. M., Ahmed, K. A., Madugundu, R., & Edrris, M. K. (2024). Impact of storage conditions on fruit color, firmness and total soluble solids of hydroponic tomatoes grown at different salinity levels. Applied Sciences, 14(14), 4923. https://doi.org/10.3390/app14146315
Ali, M. N. H. A., Jamali, L. A., Soomro, S. A., Chattha, S. H., Ibupoto, K. A., Abbasi, N. A., & Qumi, N. M. (2018). Post-harvest losses and control of unprocessed sugarcane. Pakistan Journal of Agricultural Research, 31(3), 355–360. http://dx.doi.org/10.17582/journal.pjar/2018/31.4.355.360
Ali, Q. M., Sitara, U., RiazUdin, P. A., & Bhutto, M. A. (2021). Influence of different storage and curing methods on the quality of onion bulb. International Journal of Biology and Biotechnology, 18(1), 525–530.
Attkan, A. K., Alam, M. S., Kumar, S., Raleng, A., & Antil, P. (2024). Mathematical modelling and analysis of sorption isotherms of onions (Allium cepa L.). Agricultural Research Journal, 61(1), 3. https://doi.org/10.5958/2395-146X.2024.00058.0
Barzigar, A., Hosseinalipour, S. M., & Mujumdar, A. S. (2025). Toward sustainable post-harvest practices: A critical review of solar and wind-assisted drying of agricultural produce with integrated thermal storage systems. Drying Technology, 43(10), 1463–1494. https://doi.org/10.1080/07373937.2025.2542440
Bangladesh Bureau of Statistics (BBS). (2020). Yearbook of agricultural statistics of Bangladesh (38th ed.). Ministry of Planning, Government of Bangladesh.
Belo, T., du Toit, L. J., & LaHue, G. T. (2023). Reducing the risk of onion bacterial diseases: A review of cultural management strategies. Agronomy Journal, 115(2), 459–473. https://doi.org/10.1002/agj2.21301
Bezabih, E., Victor, A. S., Dereje, K., Ngoni, N., Amsalu, A., & Hedija, M. (2017). Assessment of postharvest losses and marketing of onions in Ethiopia. International Journal of Postharvest Technology and Innovation, 5(4), 300–319. https://doi.org/10.1504/IJPTI.2017.092466
Chattha, S. H., Mirani, B. N., Soomro, S. A., Ibupoto, K. A., & Khan, Z. A. (2020). Storage performance of forced ventilated, natural ventilated, and traditional methods on the quality of onion bulbs. Journal of Pure and Applied Agriculture, 5(1), 34–41.
Chávez-Mendoza, C., & Guevara-Aguilar, A. (2025). Storage of fruits and vegetables in controlled atmospheres and its application in the preservation of white onion quality. In Engineering principles of food processing technology and product realization (pp. 135–163). Apple Academic Press. https://doi.org/10.1201/9781032713922-7
Dileep, K. C., Rana, P., Bhatt, K., Thakur, M., Thakur, M., & Sharma, A. (2024). Development of on-farm storage and processing technologies for horticulture produce. In Advances in postharvest analysis and technology of horticultural crops (pp. 277–300). Springer Nature. https://doi.org/10.1007/978-981-97-7247-6_14
Eun, S. K., Sae, J. H., Young-Soo, K., & Se, W. P. (2012). Changes in onion (Allium cepa L.) bulb quality during storage at room temperature and in a greenhouse. Korean Journal of Plant Research, 25(5), 591–595. https://doi.org/10.7732/kjpr.2012.25.5.591
Falola, A., Mukaila, R., Uddin, I. I. R. O., Ajewole, C. O., & Gbadebo, W. (2022). Postharvest losses in onion: Causes and determinants. KSU Journal of Agriculture and Nature, 26(3), 346–354. https://doi.org/10.18016/ksutarimdoga.vi.1091225
Food and Agriculture Organization (FAO). (2017). FAO homepage. http://www.fao.org
Fatih, H. (2018). A comprehensive overview of onion production: Worldwide and Turkey. IOSR Journal of Agriculture and Veterinary Science, 11(6), 17–27. https://doi.org/10.9790/2380-1109011727
Forotaghe, Z. A., Souri, M. K., Jahromi, M. G., & Torkashvand, A. M. (2021). Physiological and biochemical responses of onion plants to deficit irrigation and humic acid application. Open Agriculture, 6(1), 728–737. https://doi.org/10.1515/opag-2021-0050
Ghulam, N., Abdur, R., Bhutta, M. S., & Ali, I. (2013). Influence of curing methods and storage conditions on the post-harvest quality of onion bulbs. Pakistan Journal of Botany, 45(2), 455–460.
Gulandaz, M. A., Kabir, M. S., Kabir, M. S. N., Ali, M., Reza, M. N., Haque, M. A., Jang, G.-H., & Chung, S.-O. (2024). Layout of Suspension-Type Small-Sized Dehumidifiers Affects Humidity Variability and Energy Consumption in Greenhouses. Horticulturae, 10(1), 63. https://doi.org/10.3390/horticulturae10010063
Imoukhuede, O. B., & Ale, M. O. (2015). Onion storage and the roof influence in the tropics. Sky Journal of Agricultural Research, 4(2), 33–37. https://doi.org/10.13140/RG.2.2.14836.94083
Islam, M. N., Nielsen, G., Stærke, S., Kjær, A., Jørgensen, B., & Edelenbos, M. (2018). Noninvasive determination of firmness and dry matter content of stored onion bulbs using shortwave infrared imaging. Applied Spectroscopy, 72(10), 1467–1478. https://doi.org/10.1177/0003702818792282
Islam, M. N., Wang, A., Pedersen, J. S., Sørensen, J. N., Körner, O., & Edelenbos, M. (2019). Online measurement of temperature and relative humidity as marker tools for quality changes in onion bulbs during storage. PLoS ONE, 14(1), e0210577. https://doi.org/10.1371/journal.pone.0210577
Kaka, A. K., Ibupoto, K. A., Chattha, S. H., Soomro, S. A., Mangio, H. R., Junejo, S. A., Soomro, A. H., Khaskheli, S. G., & Kaka, S. K. (2019). Effect of hot water treatments and storage period on quality attributes of banana (Musa sp.) fruit. Pure and Applied Biology, 8(1), 363–371. http://dx.doi.org/10.19045/bspab.2018.700195
Kakade, S. R., Kad, V. P., Shelke, G. N., Yenge, G. B., & Kamble, K. J. (2023). Different onion storage structures: Dimensions, materials, and effects on the quality of onions: A review. Pharma Innovation Journal, 12(SP-12), 1969–1983.
Kiaya, V. (2014). Post-harvest losses and strategies to reduce them. Technical Paper on Postharvest Losses, Action Contre la Faim (ACF), 25(3), 1-25.
Kim, S. Y., Park, S., Hong, S. J., Kim, E., Nurhisna, N. I., Park, J., & Kim, G. (2024). Time-series prediction of onion quality changes in cold storage based on long short-term memory networks. Postharvest Biology and Technology, 213, 112927. https://doi.org/10.1016/j.postharvbio.2024.112927
Kiran, P. R., Aradwad, P., TV, A. K., Nayana, N. P., CS, R., Sahoo, M., Urhe, S. B., Yadav, R., Kar, A., & Mani, I. (2024). A comprehensive review on recent advances in postharvest treatment, storage, and quality evaluation of onion (Allium cepa): Current status and challenges. Future Postharvest Food, 1(1), 124–157. . https://doi.org/10.1002/fpf2.12009
Mandake, S., Shikalgar, N., & Deshmukh, A. M. (2023). Design and development of an adequate ventilation system to preserve freshly harvested onions. Materials Today: Proceedings, 72, 943–950. https://doi.org/10.1016/j.matpr.2022.09.096
Muhie, S. H. (2022). Preharvest production practices, and postharvest treatment and handling methods for best quality onion bulbs. Journal of Horticultural Science and Biotechnology, 97(5), 552–559. https://doi.org/10.1080/14620316.2022.2041493
Naqash, S., Naik, H. R., Dar, B. N., & Makroo, H. A. (2021). Different methods for curing of bulb crops: Principle, mechanism and effects on crop quality and its storage. Scientia Horticulturae, 289, 110483. https://doi.org/10.1016/j.scienta.2021.110483
Ochar, K., & Kim, S. H. (2023). Conservation and global distribution of onion (Allium cepa L.) germplasm for agricultural sustainability. Plants, 12(18), 3294. https://doi.org/10.3390/plants12183294
Petropoulos, S. A., Ntatsi, G., & Ferreira, I. C. F. R. (2017). Long-term storage of onion and the factors that affect its quality: A critical review. Food Reviews International, 33(1), 62–83. https://doi.org/10.1080/87559129.2015.1137312
Rodrigues, A. S., Almeida, D. P. F., Garcia-Falcon, M. S., Simal-Gandara, J., & Perez-Gregorio, M. R. (2012). Postharvest storage systems affect phytochemical content and quality of traditional Portuguese onion cultivars. Acta Horticulturae, 934, 1327–1334. . https://doi.org/17660/ActaHortic.2012.934.180
Samota, M. K., Selvan, S. S., Choudhary, P., Nath, A., Ahlawat, A., & Varinda. (2025). Mechanisms behind the post-harvest sprouting of onions (Allium cepa) and future implications of prevention strategies. Journal of Stored Products Research, 111, 102518. https://doi.org/10.1016/j.jspr.2024.102518
Selivanova, M., Aysanov, T., Romanenko, E., Sosyura, E., Esaulko, N., & German, M. (2019). Productivity and quality of onion products during storage depend on mineral nutrition. IOP Conference Series: Earth and Environmental Science, 315, 2202. https://doi.org/10.1088/1755-1315/315/2/022022
Shankar, V. S., Thirupathi, V., & Venugopal, A. P. (2017). Development of on-farm ventilated storage system for aggregatum onion. International Journal of Current Microbiology and Applied Sciences, 6(6), 1354–1361. https://doi.org/10.20546/ijcmas.2017.606.159
Shankar, V. S., Velmurugan, G., Prathiba, R., Poornima, D. S., Suvetha, M., & Keerthiga, V. (2022). Effect of on-farm storage structure on physical and biochemical changes in aggregatum onion. Materials Today: Proceedings, 72, 2417–2422. https://doi.org/10.1016/j.matpr.2022.09.429
Sharma, K., Aroor, M. S., Das, S., Bora, B., Gupta, M., & Srivatsan, V. (2025). Comprehensive review on the current scenarios in onion processing and addressing the grand onion challenge of India. Scientia Horticulturae, 345, 114152. https://doi.org/10.1016/j.scienta.2025.114152
Sharma, P., Sharma, S. R., Dhall, R. K., & Mittal, T. C. (2020). Effect of γ-radiation on post-harvest storage life and quality of onion bulb under ambient condition. Journal of Food Science and Technology, 57(7), 2534–2544. https://doi.org/10.1007/s13197-020-04290-z
Shelake, P. S., Mohapatra, D., Giri, S. K., & Chakraborty, S. K. (2024). Dissociation kinetics of gaseous ozone in onion (Allium cepa L.) bulbs. Ozone: Science & Engineering, 46(1), 43–52. https://doi.org/10.1080/01919512.2023.2195437
Singh, D., Sharma, R. R., & Kesharwani, A. K. (2021). Postharvest losses of horticultural produce. In Postharvest handling and diseases of horticultural produce (pp. 1–24). CRC Press. https://doi.org/10.1201/9781003045502
Singh, H., & Khar, A. (2022). Potential of onion (Allium cepa) as traditional therapeutic and functional food: An update. Indian Journal of Agricultural Sciences, 92(11), 1291–1297. https://doi.org/10.56093/ijas.v92i11.123235
Singh, P. R., Mahajan, V., Verma, A., Sagar, R., Jayaswall, K., Shukla, N., Gedam, P., & Singh, M. (2021). Identification and characterization of white onion (Allium cepa L.) genotypes for high total soluble solid content through molecular markers. Genetic Resources and Crop Evolution, 68(3), 957–967. https://doi.org/10.1007/s10722-020-01037-9
Soomro, S. A., Ibupoto, K. A., Soomro, N. M., & Jamali, L. A. (2016). Effect of storage methods on the quality of onion bulbs. Pakistan Journal of Agriculture, Agricultural Engineering and Veterinary Sciences, 32(2), 221–228.
Sun, J., Kunnemeyer, R., McGlone, A., Tomer, N., & Sharrock, K. (2020). A spatially resolved transmittance spectroscopy system for detecting internal rots in onions. Postharvest Biology and Technology, 163, 111141. https://doi.org/10.1016/j.postharvbio.2020.111141.
United States Department of Agriculture, Foreign Agricultural Service (USDA FAS). (2021). Global Agricultural Information Network (GAIN) reports. https://gain.fas.usda.gov
Vishwakarma, R. K., Kumar, N., Sharma, K., Kumar, Y., & Kumar, C. (2022). Storage. In Agro-processing and food engineering: Operational and applied aspects (pp. 353–413). Springer Singapore. https://doi.org/10.1007/978-981-16-7289-7
Vu, N. D., Nguyen, V. M., & Tran, T. T. (2023). Effects of pH, total soluble solids, and pectin concentration on color, texture, vitamin C, and sensory quality of mango fruit bar. International Journal of Food Science, 2023(1), 6618300. https://doi.org/10.1155/2023/6618300
Wakchaure, G. C., Khapte, P. S., Kumar, S., Kumar, P. S., Sabatino, L., & Kumar, P. (2023). Exogenous growth regulators and water stress enhance long-term storage quality characteristics of onion. Agronomy, 13(2), 297. https://doi.org/10.3390/agronomy13020297
Wang, A., Islam, M. N., Johansen, A., Haapalainen, M., Latvala, S., & Edelenbos, M. (2019). Pathogenic Fusarium oxysporum f. sp. cepae in onion bulbs emits volatile organic compounds correlating with infection. Postharvest Biology and Technology, 152, 19–28. http://hdl.handle.net/10138/327098
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 The Authors

This work is licensed under a Creative Commons Attribution 4.0 International License.
By publishing in this journal, authors agree to the following terms:
a) Authors retain copyright and grant the journal the right of first publication. The work is simultaneously licensed under the Creative Commons Attribution License, which permits sharing and adaptation of the work with appropriate credit to the authors and the journal.
b) Authors may enter into separate, additional agreements for non-exclusive distribution of the published version of the work (e.g., posting to an institutional repository or inclusion in a book), provided that proper credit is given to the original publication in this journal.



