Selection and application of control principles in beer brewing processes based on MCDA framework

Authors

  • Mirjalol Yusupov Tashkent Institute of Chemical Technology, Department of Automation and Digital Control https://orcid.org/0009-0009-1671-7747
  • Zafar Turakulov Tashkent Institute of Chemical Technology, Department of Automation and Digital Control https://orcid.org/0000-0002-8664-5306
  • Azizbek Yusupbekov Tashkent State Technical University, Department of Automation of Production Process

DOI:

https://doi.org/10.18011/bioeng.2025.v19.1295

Keywords:

Beer Production, Control System Design, Fuzzy Logic Control, Industry 4.0, Model Predictive Control, Process Automation

Abstract

Beer production is a complex process involving multiple stages with diverse control requirements, including nonlinear biological reactions and energy-intensive operations. To ensure consistent product quality, operational efficiency, and compatibility with digital manufacturing technologies, the selection of appropriate control strategies is critical. This study presents a structured methodology for the evaluation and integration of control system principles tailored to beer production. The process was decomposed into key operational stages, mashing, boiling, fermentation, conditioning, and packaging, and specific control objectives were defined for each. A multi-criteria decision analysis (MCDA) framework, based on the Analytic Hierarchy Process (AHP), was applied to assess six control methods: PID, cascade, feedforward, fuzzy logic, model predictive control (MPC), and On/Off control. Evaluation criteria included control performance, ease of implementation, adaptability, energy efficiency, cost-effectiveness, and Industry 4.0 integration potential. The results indicated that a hybrid control approach, combining PID, fuzzy logic, and MPC, offers optimal performance across the production workflow. An integrated control architecture was designed to coordinate these methods within a scalable and intelligent automation framework. The proposed solution supports real-time monitoring, improved process stability, and readiness for future digital upgrades, providing a practical model for intelligent brewery operations.

Downloads

Download data is not yet available.

References

Abunde, N. F., Asiedu, N. Y., & Addo, A. (2019). Modeling, simulation and optimal control strategy for batch fermentation processes. International Journal of Industrial Chemistry, 10(1), 67–76. https://doi.org/10.1007/s40090-019-0172-9

Bamforth, C. W. (2016). Brewing materials and processes: A practical approach to beer excellence (Online-Ausgabe). Elsevier AP.

Bamforth, C. W., & Fox, G. P. (2023). Malting and brewing. In ICC Handbook of 21st Century Cereal Science and Technology (pp. 363–368). Elsevier. https://doi.org/10.1016/B978-0-323-95295-8.00013-7

Borase, R. P., Maghade, D. K., Sondkar, S. Y., & Pawar, S. N. (2021). A review of PID control, tuning methods and applications. International Journal of Dynamics and Control, 9(2), 818–827. https://doi.org/10.1007/s40435-020-00665-4

Chai, W. Y., Teo, K. T. K., Tan, M. K., & Tham, H. J. (2022). Fermentation Process Control and Optimization. Chemical Engineering & Technology, 45(10), 1731–1747. https://doi.org/10.1002/ceat.202200029

Chen, C.-J., Liao, Y.-C., & Chou, F.-I. (2024). Optimal Design of the Cascade Controller for Reheating Furnace by Taguchi Method. IEEE Access, 12, 39728–39736. https://doi.org/10.1109/ACCESS.2024.3377113

Coldea, T., Mudura, E., Şibotean, C., & Comşa, E. (2014). The Brewing Process: Optimizing the Fermentation. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Food Science and Technology, 71(2), 219–220. https://doi.org/10.15835/buasvmcn-fst:10813

De Oliveira, V. A., Barbero, A. P. L., Sphaier, L. A., Dos Santos, A. B., Peixoto, F. C., & Silva, V. N. H. (2021). Real-Time Fermentation Monitoring of Synthetic Beer Wort Using Etched Fiber Bragg Grating. IEEE Transactions on Instrumentation and Measurement, 70, 1–7. https://doi.org/10.1109/TIM.2021.3117051

Duan, F., & Kang, Z. (2024). Oxygen excess ratio feedforward control based on ESO for PEMFC in DC off-grid hydrogen production systems. International Journal of Hydrogen Energy, 77, 347–358. https://doi.org/10.1016/j.ijhydene.2024.06.069

Dubey, V., Goud, H., & Sharma, P. C. (2022). Role of PID Control Techniques in Process Control System: A Review. In P. Nanda, V. K. Verma, S. Srivastava, R. K. Gupta, & A. P. Mazumdar (Eds.), Data Engineering for Smart Systems (Vol. 238, pp. 659–670). Springer Singapore. https://doi.org/10.1007/978-981-16-2641-8_62

Eshbobaev, J., Norkobilov, A., Usmanov, K., Khamidov, B., Kodirov, O., & Avezov, T. (2024). Control of Wastewater Treatment Processes Using a Fuzzy Logic Approach. The 3rd International Electronic Conference on Processes, 39. https://doi.org/10.3390/engproc2024067039

Hägglund, T., & Guzmán, J. L. (2024). Give us PID controllers and we can control the world. IFAC-PapersOnLine, 58(7), 103–108. https://doi.org/10.1016/j.ifacol.2024.08.018

Hermanucz, P., & Geczi, G. (2022). ENERGY EFFICIENT SOLUTION IN THE BREWING PROCESS USING A DUAL-SOURCE HEAT PUMP. THERMAL SCIENCE, 26(3A), 2311–2319.

Hornink, G. G. (2024). Principles of Beer Production and Enzymes in Mashing (2nd ed.). Alfenas-MG.

Hu, J., Shan, Y., Guerrero, J. M., Ioinovici, A., Chan, K. W., & Rodriguez, J. (2021). Model predictive control of microgrids – An overview. Renewable and Sustainable Energy Reviews, 136, 110422. https://doi.org/10.1016/j.rser.2020.110422

Jamaludin, M., Tsai, Y.-C., Lin, H.-T., Huang, C.-Y., Choi, W., Chen, J.-G., & Sean, W.-Y. (2024). Modeling and Control Strategies for Energy Management in a Wastewater Center: A Review on Aeration. Energies, 17(13), 3162. https://doi.org/10.3390/en17133162

Janošovský, J., Boháčiková, V., Kraviarová, D., & Variny, M. (2022). Multi-criteria decision analysis of steam reforming for hydrogen production. Energy Conversion and Management, 263, 115722. https://doi.org/10.1016/j.enconman.2022.115722

Kizielewicz, B., Shekhovtsov, A., & Sałabun, W. (2021). A New Approach to Eliminate Rank Reversal in the MCDA Problems. In M. Paszynski, D. Kranzlmüller, V. V. Krzhizhanovskaya, J. J. Dongarra, & P. M. A. Sloot (Eds.), Computational Science – ICCS 2021 (Vol. 12742, pp. 338–351). Springer International Publishing. https://doi.org/10.1007/978-3-030-77961-0_29

Liu, P., Tian, J., Sun, P., & Wei, X. (2024). Cascade control system design for a space nuclear reactor. Annals of Nuclear Energy, 208, 110760. https://doi.org/10.1016/j.anucene.2024.110760

Mohindru, P. (2024). Review on PID, fuzzy and hybrid fuzzy PID controllers for controlling non-linear dynamic behaviour of chemical plants. Artificial Intelligence Review, 57(4), 97. https://doi.org/10.1007/s10462-024-10743-0

Pirdashti, M., Ghadi, A., Mohammadi, M., & Shojatalab, G. (2009). Multi-Criteria Decision-Making Selection Model with Application to Chemical Engineering Management Decisions. International Journal of Chemical, Materials and Biomolecular Sciences, 3(1), 10–15.

Schwenzer, M., Ay, M., Bergs, T., & Abel, D. (2021). Review on model predictive control: An engineering perspective. The International Journal of Advanced Manufacturing Technology, 117(5–6), 1327–1349. https://doi.org/10.1007/s00170-021-07682-3

Shekhovtsov, A., Więckowski, J., & Wątróbski, J. (2021). Toward Reliability in the MCDA Rankings: Comparison of Distance-Based Methods. In I. Czarnowski, R. J. Howlett, & L. C. Jain (Eds.), Intelligent Decision Technologies (Vol. 238, pp. 321–329). Springer Singapore. https://doi.org/10.1007/978-981-16-2765-1_27

Tamo, A., & Hilario-Tacuri, A. (2020). Implementing WLAN-IoT control system for brewing fermentation through Raspberry PI. 2020 IEEE XXVII International Conference on Electronics, Electrical Engineering and Computing (INTERCON), 1–4. https://doi.org/10.1109/INTERCON50315.2020.9220232

Zamudio Lara, J. M., Dewasme, L., Hernández Escoto, H., & Vande Wouwer, A. (2022). Parameter Estimation of Dynamic Beer Fermentation Models. Foods, 11(22), 3602. https://doi.org/10.3390/foods11223602

Downloads

Published

18-02-2026

How to Cite

Yusupov, M., Turakulov, Z., & Yusupbekov, A. (2026). Selection and application of control principles in beer brewing processes based on MCDA framework. Revista Brasileira De Engenharia De Biossistemas, 19. https://doi.org/10.18011/bioeng.2025.v19.1295

Issue

Section

Regular Section

Similar Articles

<< < 3 4 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.