Contribution to the mechanical performance of a simply supported lightweight concrete beam reinforced with bio-sourced nanocomposites
DOI:
https://doi.org/10.18011/bioeng.2025.v19.1293Keywords:
Bending Beam Simple Supported, Nano-bio-inclusions, Mori-Tanaka Methodology, Mechanics of Continuous MediaAbstract
Gypsum is an essential building material widely used in the construction industry, particularly in the form of lightweight concrete. Nanotechnology has facilitated the enhancement of its properties in recent years by incorporating nanostructured materials from biological sources, such as nanoparticles derived from cow bones and African and Brazilian reeds, known for their superior mechanical properties. This study explores ways to improve the mechanical properties of lightweight concrete composites using nanoparticles from plants or animals. The goal is to enhance the bending performance of lightweight gypsum beams while aiming to reduce production costs by utilizing bio-sourced materials. We used the Mori-Tanaka method to examine the effectiveness of mixing lightweight concrete with nanometric additions from biological sources. The study of beam behavior depends on methods used in continuum mechanics, particularly bending analysis. The beams studied are simply supported. The results show that nanoparticles from bovine bones, African reed, or Brazilian reed not only strengthen the material but also significantly improve the bending performance of lightweight gypsum beams when subjected to bending.
Downloads
References
Agrawal, Y. K., & Tandon, S. G. (1971). N-Arylhydroxamic acids. Journal of Chemical & Engineering Data, 16(4), 495–496. https://doi.org/10.1021/je60051a004. DOI: https://doi.org/10.1021/je60051a004
BENFRID, A., & BOUIADJRA, M. B. (2025). A new approach for studying plaster beam bending based on DISS Algerian (nano-short-bio-fibres). Modern Journal of Health and Applied Sciences, 2(1), 43-58. https://orcid.org/0009-0008-4814-6187 DOI: https://doi.org/10.70411/MJHAS.2.1.2025183
Benfrid, A., Benbakhti, A., Harrat, Z. R., Chatbi, M., Krour, B., Bouiadjra, M. B. “Thermomechanical Analysis of Glass Powder Based Eco-concrete Panels: Limitations and Performance Evaluation”, Periodica Polytechnica Civil Engineering, 67(4), pp. 1284–1297, 2023. https://doi.org/10.3311/PPci.22781 DOI: https://doi.org/10.3311/PPci.22781
Benkabou, R., Abbès, B., Abbès, F., Asroun, A., & Li, Y. (2017). Contribution of 3D numerical simulation of instrumented indentation testing in the identification of elastic-viscoplastic behaviour law of a high-performance concrete. Matériaux & Techniques, 105, 102.https://doi.org/10.1051/mattech/2017023 DOI: https://doi.org/10.1051/mattech/2017023
Chatbi, M., Krour, B., Benatta, M. A., Harrat, Z. R., Amziane, S., & Bouiadjra, M. B. (2022). Bending analysis of nano-SiO2 reinforced concrete slabs resting on elastic foundation. Structural Engineering and Mechanics, An Int'l Journal, 84(5), 685-697. https://doi.org/10.12989/sem.2022.84.5.685. https://doi.org/10.12989/sem.2022.84.5.685
Currey, J. D. (2012). The structure and mechanics of bone. Journal of Materials Science, 47,41-54.https://doi.org/10.1007/s10853-011-5914-9 Ghavami, K. (1995). Ultimate load behaviour of bamboo-reinforced lightweight concrete beams. Cement and concrete composites, 17(4), 281-288. https://doi.org/10.1016/0958-9465(95)00018-8 DOI: https://doi.org/10.1016/0958-9465(95)00018-8
Ebanda, B., Boris, N., & Ateba, A. (2018). Study of the diffusion behavior of water vapor sorption in natural fiber: Rhecktophyllum camerunense. Indian J. Eng., 143-150. Vol. 15, 2018 , 2319–7757 ISSN EISSN 2319–7765, https://www.discoveryjournals.org/
Ghumare, S. M., & Sayyad, A. S. (2017). A new fifth-order shear and normal deformation theory for static bending and elastic buckling of P-FGM beams. Latin American Journal of Solids and Structures, 14, 1893-1911. https://doi.org/10.1590/1679-78253972 DOI: https://doi.org/10.1590/1679-78253972
Hadji, Lazreg, Daouadji, T. Hassaine, & Bedia, E. Adda. (2015). A refined exponential shear deformation theory for free vibration of FGM beam with porosities. Geomechanics and Engineering, 9(3), 361–372. https://doi.org/10.12989/GAE.2015.9.3.361 DOI: https://doi.org/10.12989/gae.2015.9.3.361
Harrat, Z. R., Amziane, S., Krour, B., & Bouiadjra, M. B. (2021). On the static behavior of nano Si0 2 based concrete beams resting on an elastic foundation. Computers and Concrete, 27(6), 575-583. https://doi.org/10.12989/cac.2021.27.6.575
Janssen, J. J. (2000). Designing and building with bamboo (pp. 130-133). Netherlands: International Network for Bamboo and Rattan. International Network for Bamboo and Rattan 2000 . ISBN 81-86247-46-7
Kecir, A., Chatbi, M., Harrat, Z. R., Bachir Bouiadjra, M., Bouremana, M., Krour, B. “Enhancing the Mechanical Performance of Concrete Slabs through the Incorporation of Nano-sized Iron Oxide Particles (Fe2O3): Non-local Bending Analysis”, Periodica Polytechnica Civil Engineering, 68(3),pp.842–858, 2024.https://doi.org/10.3311/PPci.23016 DOI: https://doi.org/10.3311/PPci.23016
Lakkad, S. C., & Patel, J. M. (1981). Mechanical properties of bamboo, a natural composite. Fibre science and technology, 14(4), 319-322. https://doi.org/10.1016/0015-0568(81)90023-3 DOI: https://doi.org/10.1016/0015-0568(81)90023-3
Mbei, E. G. L., Atangana, A., Bakoura, M., & Nzengwa, R. (2015). Contribution à la caractérisation ultrasonore en vue de la détection du gondolement des fibres dans un matériau composite plâtre/fibres de Rhectophyllum Camerunense. Afrique Science: Revue Internationale des Sciences et Technologie, 11(3), 1-9. ISSN 1813-548X,http://www.afriquescience.info
Molari, L., Coppolino, F. S., & García, J. J. (2021). Arundo donax: A widespread plant with great potential as sustainable structural material. Construction and Building Materials, 268, 121143. https://doi.org/10.1016/j.conbuildmat.2020.121143 DOI: https://doi.org/10.1016/j.conbuildmat.2020.121143
Mori, T., & Tanaka, K. (1973). Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta metallurgica, 21(5), 571-574. https://doi.org/10.1016/0001-6160(73)90064-3 DOI: https://doi.org/10.1016/0001-6160(73)90064-3
Mourad, C., Rebai, B., Mansouri, K., Khadraoui, F., Berkia, A., & Messas, T. (2024). Investigating the influence of material composition on bending analysis of functionally graded beams using a 2D refined theory. Journal of Computational Applied Mechanics, 55(1), 62-76. https://doi.org/10.22059/jcamech.2024.368866.909
NEYA, B., DUCHEMIN, B., BIZET, L., KANEMA, J. M., & PANTET, A. (2018). Elaboration et caractérisation d’un matériau de construction à base de fibres d’Hibiscus cannabinus L.(Kénaf) et de plâtre. Afrique SCIENCE, 14(1), 96-105.ISSN 1813-548X, http://www.afriquescience.info
Nguyen, D. D., Dao, S. D., Nguyen, X. T., & Giap, V. T. (2025). Stochastic Finite Element Analysis for Static Bending Beams with a Two-Dimensional Random Field of Material Properties. Modelling, 6(2), 37. https://doi.org/10.3390/modelling6020037 DOI: https://doi.org/10.3390/modelling6020037
Noutegomo, B., Ebanda, F. B., & Atangana, A. (2024). Numerical modelling of hygro-mechanical behavior of Rhecktophyllum Camerunense vegatable fibers. International Journal for Simulation and Multidisciplinary Design Optimization, 15, 18. https://doi.org/10.1051/smdo/2024017 DOI: https://doi.org/10.1051/smdo/2024017
Powała, K., Obraniak, A., Heim, D. “Mechanical Properties of Gypsum-PCM Composite Refined with the Acrylic Copolymer”, Periodica Polytechnica Civil Engineering, 66(1), pp. 235–243, 2022. https://doi.org/10.3311/PPci.18135 DOI: https://doi.org/10.3311/PPci.18135
Reilly, D. T., & Burstein, A. H. (1975). The elastic and ultimate properties of compact bone tissue. Journal of biomechanics, 8(6), 393-405. https://doi.org/10.1016/0021-9290(75)90075-5 Rho, J. Y., Tsui, T. Y., & Pharr, G. M. (1997). Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation. Biomaterials, 18(20), 1325-1330. https://doi.org/10.1016/S0142-9612(97)00073-2 DOI: https://doi.org/10.1016/S0142-9612(97)00073-2
Yalçin, O. U., & Kaya, A. İ. (2022). Properties of gypsum particleboard with added mineral dolomite. Maderas. Ciencia y tecnología, 24. http://dx.doi.org/10.4067/s0718-221x2022000100428 DOI: https://doi.org/10.4067/S0718-221X2022000100428
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 The Authors

This work is licensed under a Creative Commons Attribution 4.0 International License.
By publishing in this journal, authors agree to the following terms:
a) Authors retain copyright and grant the journal the right of first publication. The work is simultaneously licensed under the Creative Commons Attribution License, which permits sharing and adaptation of the work with appropriate credit to the authors and the journal.
b) Authors may enter into separate, additional agreements for non-exclusive distribution of the published version of the work (e.g., posting to an institutional repository or inclusion in a book), provided that proper credit is given to the original publication in this journal.



