Traceability in the supply chain of specialty coffee small producers through QR technology in Colombia
DOI:
https://doi.org/10.18011/bioeng.2025.v19.1286Keywords:
Digital Traceability, QR Code Technology, Cloud Technology, Coffee Supply Chain, Sustainable Supply ChainAbstract
The global coffee industry faces pressing sustainability challenges, including volatile market prices, low wages, labor shortages, and limited technological adoption, which threaten the viability of small producers, especially in Colombia. In this context, ensuring traceability in the coffee supply chain emerges as a crucial strategy to promote transparency, fairness, and sustainability. This study aims to develop and test a cloud-based traceability system utilizing QR codes in the Colombian specialty coffee supply chain, with a focus on its implementation process and practical implications for small-scale producers. To achieve this, the research adopts a case study methodology, combining direct observations and interviews with nine smallholder coffee producers in Cauca. A cloud-based traceability tool was developed and tested to track the movement of coffee lots along the supply chain, from farmers to consumers. The results demonstrate that the system enhances data entry accuracy, facilitates real-time access to information, and fosters trust among stakeholders. Moreover, it facilitates the documentation of product origin, quality, and sustainability attributes, reducing risks of fraud and improving market access for producers. The study concludes that QR-based traceability is a cost-effective and scalable solution for small-scale producers, contributing to more sustainable and transparent agri-food supply chains.
Downloads
References
Anacona Mopan, Y. E., Rubiano-Ovalle, O., Paz, H., Solis Pino, A. F., Chong, M., & Luna, A. (2023). Fresh Product Supply Chain Analysis in Cauca, Colombia — A Hass Avocado System Dynamics Approach. Systems, 11(1), 29. https://doi.org/10.3390/systems11010029.
Anacona-Mopan, Y. E., Rubiano-Ovalle, O., Paz, H., Luna, A., Pino, A. F. S., & Chong, M. (2024). Public Policy on Agricultural Projects Assessing the Impact: A Hass Avocado Crop System Dynamics Applied Valuation. Systems, 12(6), 210. https://doi.org/10.3390/systems12060210.
Anagnostis, A., Asiminari, G., Papageorgiou, E., & Bochtis, D. (2020). A Convolutional Neural Networks Based Method for Anthracnose Infected Walnut Tree Leaves Identification. Applied Sciences, 10(2), 469. https://doi.org/10.3390/app10020469.
Aung, M. M., & Chang, Y. S. (2014). Traceability in a food supply chain: Safety and quality perspectives. Food Control, 39, 172–184. https://doi.org/10.1016/j.foodcont.2013.11.007.
Bager, S. L., & Lambin, E. F. (2020). Sustainability strategies by companies in the global coffee sector. Business Strategy and the Environment, 29(8), 3555–3570. https://doi.org/10.1002/bse.2596.
Bager, S. L., Singh, C., & Persson, U. M. (2022). Blockchain is not a silver bullet for agro-food supply chain sustainability: Insights from a coffee case study. Current Research in Environmental Sustainability, 4, 100163. https://doi.org/10.1016/j.crsust.2022.100163.
Bashiri, M., Tjahjono, B., Lazell, J., Ferreira, J., & Perdana, T. (2021). The Dynamics of Sustainability Risks in the Global Coffee Supply Chain: A Case of Indonesia–UK. Sustainability, 13(2), 589. https://doi.org/10.3390/su13020589.
Bettín-Díaz, R., Rojas, A. E., & Mejía-Moncayo, C. (2022). Colombian Origin Coffee Supply Chain Traceability by a Blockchain Implementation. Operations Research Forum, 3(4), 64. https://doi.org/10.1007/s43069-022-00174-4.
Bosona, T., & Gebresenbet, G. (2013). Food traceability as an integral part of logistics management in food and agricultural supply chain. Food Control, 33(1), 32–48. https://doi.org/10.1016/j.foodcont.2013.02.004.
Café de Cauca . (2025). https://cauca.federaciondecafeteros.org/cafe-de-cauca.
Cortés, C., Guzmán, A., Rincón-González, C. A., Torres-Casas, C., & Mejía-Moncayo, C. (2019). A Proposal Model Based on Blockchain Technology to Support Traceability of Colombian Scholar Feeding Program (PAE) (pp. 245–256). https://doi.org/10.1007/978-3-030-32475-9_18.
Cortés-Macías, E. T., López, C. F., Gentile, P., Girón-Hernández, J., & López, A. F. (2022). Impact of post-harvest treatments on physicochemical and sensory characteristics of coffee beans in Huila, Colombia. Postharvest Biology and Technology, 187, 111852. https://doi.org/10.1016/j.postharvbio.2022.111852.
Crockett, R. A., King, S. E., Marteau, T. M., Prevost, A. T., Bignardi, G., Roberts, N. W., Stubbs, B., Hollands, G. J., & Jebb, S. A. (2018). Nutritional labelling for healthier food or non-alcoholic drink purchasing and consumption. Cochrane Database of Systematic Reviews, 2021(6). https://doi.org/10.1002/14651858.CD009315.pub2.
Cunha, C. R., Peres, E., Morais, R., Oliveira, A. A., Matos, S. G., Fernandes, M. A., Ferreira, P. J. S. G., & Reis, M. J. C. S. (2010). The use of mobile devices with multi-tag technologies for an overall contextualized vineyard management. Computers and Electronics in Agriculture, 73(2), 154–164. https://doi.org/10.1016/j.compag.2010.05.007.
Dabbene, F., & Gay, P. (2011). Food traceability systems: Performance evaluation and optimization. Computers and Electronics in Agriculture, 75(1), 139–146. https://doi.org/10.1016/j.compag.2010.10.009.
Dannoun, Y. (2022). Application of supply chains management in construction project: a review in the compatibility between the procurements and implementation process. International Journal of Advanced Engineering, Sciences and Applications, 3(1), 18–21. https://doi.org/10.47346/ijaesa.v3i1.91.
de Assumpção, N. H., de Almeida Alcantara, B., de Souza Lima, I. A., & Samed, M. M. A. (2025). Development of a Causal Loop Diagram to Understand the Complexity of a Food Bank’s Supply Chain Processes (pp. 477–488). https://doi.org/10.1007/978-3-031-80785-5_36.
Demestichas, K., Peppes, N., Alexakis, T., & Adamopoulou, E. (2020). Blockchain in Agriculture Traceability Systems: A Review. Applied Sciences, 10(12), 4113. https://doi.org/10.3390/app10124113.
Dietz, T., Auffenberg, J., Estrella Chong, A., Grabs, J., & Kilian, B. (2018). The Voluntary Coffee Standard Index (VOCSI). Developing a Composite Index to Assess and Compare the Strength of Mainstream Voluntary Sustainability Standards in the Global Coffee Industry. Ecological Economics, 150, 72–87. https://doi.org/10.1016/j.ecolecon.2018.03.026.
Dionysis, S., Chesney, T., & McAuley, D. (2022). Examining the influential factors of consumer purchase intentions for blockchain traceable coffee using the theory of planned behaviour. British Food Journal, 124(12), 4304–4322. https://doi.org/10.1108/BFJ-05-2021-0541.
Gandino, F., Montrucchio, B., Rebaudengo, M., & Sanchez, E. R. (2009). On Improving Automation by Integrating RFID in the Traceability Management of the Agri-Food Sector. IEEE Transactions on Industrial Electronics, 56(7), 2357–2365. https://doi.org/10.1109/TIE.2009.2019569.
Garcia‐Torres, S., Rey‐Garcia, M., & Sáenz, J. (2024). Enhancing sustainable supply chains through traceability, transparency and stakeholder collaboration: A quantitative analysis. Business Strategy and the Environment, 33(7), 7607–7629. https://doi.org/10.1002/bse.3884.
Geissdoerfer, M., Savaget, P., Bocken, N. M. P., & Hultink, E. J. (2017). The Circular Economy – A new sustainability paradigm? Journal of Cleaner Production, 143, 757–768. https://doi.org/10.1016/j.jclepro.2016.12.048.
Ghaani, M., Cozzolino, C. A., Castelli, G., & Farris, S. (2016). An overview of the intelligent packaging technologies in the food sector. Trends in Food Science & Technology, 51, 1–11. https://doi.org/10.1016/j.tifs.2016.02.008.
Ghisellini, P., Cialani, C., & Ulgiati, S. (2016). A review on circular economy: the expected transition to a balanced interplay of environmental and economic systems. Journal of Cleaner Production, 114, 11–32. https://doi.org/10.1016/j.jclepro.2015.09.007.
Hassoun, A., Alhaj Abdullah, N., Aït-Kaddour, A., Ghellam, M., Beşir, A., Zannou, O., Önal, B., Aadil, R. M., Lorenzo, J. M., Mousavi Khaneghah, A., & Regenstein, J. M. (2024). Food traceability 4.0 as part of the fourth industrial revolution: key enabling technologies. Critical Reviews in Food Science and Nutrition, 64(3), 873–889. https://doi.org/10.1080/10408398.2022.2110033.
International Coffee Organization (ICO). (2025). https://www.ico.org.
Karlsen, K. M., Dreyer, B., Olsen, P., & Elvevoll, E. O. (2013). Literature review: Does a common theoretical framework to implement food traceability exist? Food Control, 32(2), 409–417. https://doi.org/10.1016/j.foodcont.2012.12.011.
Kath, J., Byrareddy, V. M., Craparo, A., Nguyen‐Huy, T., Mushtaq, S., Cao, L., & Bossolasco, L. (2020). Not so robust: Robusta coffee production is highly sensitive to temperature. Global Change Biology, 26(6), 3677–3688. https://doi.org/10.1111/gcb.15097.
Kersten, C. C., Kerber, J. M. C., Silva, J. dos S., Bouzon, M., & Campos, L. M. de S. (2024). Traceability in the agri-food supply chain: a new perspective under the Circular Economy approach. Production, 34. https://doi.org/10.1590/0103-6513.20240009.
Khanna, A., Jain, S., Burgio, A., Bolshev, V., & Panchenko, V. (2022). Blockchain-Enabled Supply Chain platform for Indian Dairy Industry: Safety and Traceability. Foods, 11(17), 2716. https://doi.org/10.3390/foods11172716.
Kim, Y. G., & Woo, E. (2016). Consumer acceptance of a quick response (QR) code for the food traceability system: Application of an extended technology acceptance model (TAM). Food Research International, 85, 266–272. https://doi.org/10.1016/j.foodres.2016.05.002.
Kolk, A. (2012). Towards a Sustainable Coffee Market: Paradoxes Faced by a Multinational Company. Corporate Social Responsibility and Environmental Management, 19(2), 79–89. https://doi.org/10.1002/csr.289.
Kwame Opoku, E., Tham, A., Morrison, A. M., & Wang, M. S. (2023). An exploratory study of the experiencescape dimensions and customer revisit intentions for specialty urban coffee shops. British Food Journal, 125(5), 1613–1630. https://doi.org/10.1108/BFJ-04-2022-0361.
Lambin, E. F., & Thorlakson, T. (2018). Sustainability Standards: Interactions Between Private Actors, Civil Society, and Governments. Annual Review of Environment and Resources, 43(1), 369–393. https://doi.org/10.1146/annurev-environ-102017-025931.
Lee, C.-H., Chen, I.-T., Yang, H.-C., & Chen, Y. J. (2022). An AI-powered Electronic Nose System with Fingerprint Extraction for Aroma Recognition of Coffee Beans. Micromachines, 13(8), 1313. https://doi.org/10.3390/mi13081313.
Li, Z., Liu, G., Liu, L., Lai, X., & Xu, G. (2017). IoT-based tracking and tracing platform for prepackaged food supply chain. Industrial Management & Data Systems, 117(9), 1906–1916. https://doi.org/10.1108/IMDS-11-2016-0489.
Ligar, B. W., Madenda, S., Mardjan, S. S., & Kusuma, T. M. (2022). Functional Requirements and Traceability System Information Modeling on Java Preanger Coffee Supply Chain. 2022 International Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS), 99–104. https://doi.org/10.1109/ICIMCIS56303.2022.10017857.
Ma, J.-Y., Shi, L., & Kang, T.-W. (2022). The Effect of Digital Transformation on the Pharmaceutical Sustainable Supply Chain Performance: The Mediating Role of Information Sharing and Traceability Using Structural Equation Modeling. Sustainability, 15(1), 649. https://doi.org/10.3390/su15010649.
Mao, D., Hao, Z., Wang, F., & Li, H. (2019). Novel Automatic Food Trading System Using Consortium Blockchain. Arabian Journal for Science and Engineering, 44(4), 3439–3455. https://doi.org/10.1007/s13369-018-3537-z.
Marfuah, U., & Yuliasih, I. (2022). Blockchain traceability for agroindustry - a literature review and future agenda. IOP Conference Series: Earth and Environmental Science, 1063(1), 012056. https://doi.org/10.1088/1755-1315/1063/1/012056.
Mbakop, L., Jenkins, G. P., Leung, L., & Sertoglu, K. (2023). Traceability, Value, and Trust in the Coffee Market: A Natural Experiment in Ethiopia. Agriculture, 13(2), 368. https://doi.org/10.3390/agriculture13020368.
Mehrabi, Z., McDowell, M. J., Ricciardi, V., Levers, C., Martinez, J. D., Mehrabi, N., Wittman, Ramankutty, H, & Jarvis, A. (2020). The global divide in data-driven farming. Nature Sustainability, 4(2), 154–160. https://doi.org/10.1038/s41893-020-00631-0.
Mejías, A. M., Bellas, R., Pardo, J. E., & Paz, E. (2019). Traceability management systems and capacity building as new approaches for improving sustainability in the fashion multi-tier supply chain. International Journal of Production Economics, 217, 143–158. https://doi.org/10.1016/j.ijpe.2019.03.022.
Moysiadis, V., Katikaridis, D., Benos, L., Busato, P., Anagnostis, A., Kateris, D., Pearson, S., & Bochtis, D. (2022). An Integrated Real-Time Hand Gesture Recognition Framework for Human–Robot Interaction in Agriculture. Applied Sciences, 12(16), 8160. https://doi.org/10.3390/app12168160.
Pena-Pena, K., Lau, D. L., Arce, A. J., & Arce, G. R. (2022). QRnet: fast learning-based QR code image embedding. Multimedia Tools and Applications, 81(8), 10653–10672. https://doi.org/10.1007/s11042-022-12357-6.
Pendrill, F., Persson, U. M., Godar, J., Kastner, T., Moran, D., Schmidt, S., & Wood, R. (2019). Agricultural and forestry trade drives large share of tropical deforestation emissions. Global Environmental Change, 56, 1–10. https://doi.org/10.1016/j.gloenvcha.2019.03.002.
Ponte, S. (2002). The `Latte Revolution’? Regulation, Markets and Consumption in the Global Coffee Chain. World Development, 30(7), 1099–1122. https://doi.org/10.1016/S0305-750X(02)00032-3.
Pradana, I. G. M. T., & Djatna, T. (2020). A Design of Traceability System in Coffee Supply Chain based on Hierarchical Cluster Analysis Approach. 2020 International Conference on Computer Science and Its Application in Agriculture (ICOSICA), 1–5. https://doi.org/10.1109/ICOSICA49951.2020.9243203.
Qian, J., Du, X., Zhang, B., Fan, B., & Yang, X. (2017). Optimization of QR code readability in movement state using response surface methodology for implementing continuous chain traceability. Computers and Electronics in Agriculture, 139, 56–64. https://doi.org/10.1016/j.compag.2017.05.009.
Quiliche, R., Rentería-Ramos, R., de Brito Junior, I., Luna, A., & Chong, M. (2021). Using Spatial Patterns of COVID-19 to Build a Framework for Economic Reactivation. Sustainability, 13(18), 10092. https://doi.org/10.3390/su131810092.
Reinecke, J., Manning, S., & von Hagen, O. (2012). The Emergence of a Standards Market: Multiplicity of Sustainability Standards in the Global Coffee Industry. Organization Studies, 33(5–6), 791–814. https://doi.org/10.1177/0170840612443629.
Ruiz-Garcia, L., & Lunadei, L. (2011). The role of RFID in agriculture: Applications, limitations and challenges. Computers and Electronics in Agriculture, 79(1), 42–50. https://doi.org/10.1016/j.compag.2011.08.010.
Saberi, S., Kouhizadeh, M., Sarkis, J., & Shen, L. (2019). Blockchain technology and its relationships to sustainable supply chain management. International Journal of Production Research, 57(7), 2117–2135. https://doi.org/10.1080/00207543.2018.1533261.
Shivendra, Chiranjeevi, K., Tripathi, M. K., & Maktedar, D. D. (2021). Block chain Technology in Agriculture Product Supply Chain. 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS), 1325–1329. https://doi.org/10.1109/ICAIS50930.2021.9395886.
Shou, Y., Zhao, X., Dai, J., & Xu, D. (2021). Matching traceability and supply chain coordination: Achieving operational innovation for superior performance. Transportation Research Part E: Logistics and Transportation Review, 145, 102181. https://doi.org/10.1016/j.tre.2020.102181.
Shuyi Qiao, Zhiqiang Wei, & Yongquan Yang. (2013). Research on Vegetable Supply Chain Traceability Model Based on Two-Dimensional Barcode. 2013 Sixth International Symposium on Computational Intelligence and Design, 317–320. https://doi.org/10.1109/ISCID.2013.86.
Solis Pino, A. F., Ramirez Palechor, G. A., Anacona Mopan, Y. E., Patiño-Arenas, V. E., Ruiz, P. H., Agredo-Delgado, V., & Mon, A. (2022). Determination of Population Mobility Dynamics in Popayán-Colombia during the COVID-19 Pandemic Using Open Datasets. International Journal of Environmental Research and Public Health, 19(22), 14814. https://doi.org/10.3390/ijerph192214814.
Teuber, R. (2010). Geographical Indications of Origin as a Tool of Product Differentiation: The Case of Coffee. Journal of International Food & Agribusiness Marketing, 22(3–4), 277–298. https://doi.org/10.1080/08974431003641612.
Tharatipyakul, A., Pongnumkul, S., Riansumrit, N., Kingchan, S., & Pongnumkul, S. (2022). Blockchain-Based Traceability System From the Users’ Perspective: A Case Study of Thai Coffee Supply Chain. IEEE Access, 10, 98783–98802. https://doi.org/10.1109/ACCESS.2022.3206860.
Trollman, H., Garcia-Garcia, G., Jagtap, S., & Trollman, F. (2022). Blockchain for Ecologically Embedded Coffee Supply Chains. Logistics, 6(3), 43. https://doi.org/10.3390/logistics6030043.
United Nations Development Programme (UNDP). (2025). https://www.undp.org.
Van Der Vossem, H. (2005). A critical analysis of the agronomic and economic sustanaibility of organic coffee production. Experimental Agriculture, 41(4), 449–473. https://doi.org/10.1017/S0014479705002863.
Verdouw, C. N., Wolfert, J., Beulens, A. J. M., & Rialland, A. (2016). Virtualization of food supply chains with the internet of things. Journal of Food Engineering, 176, 128–136. https://doi.org/10.1016/j.jfoodeng.2015.11.009.
Yang, L., Ni, Y., & Ng, C.-T. (2023). Blockchain-enabled traceability and producer’s incentive to outsource delivery. International Journal of Production Research, 61(11), 3811–3828. https://doi.org/10.1080/00207543.2022.2072785.
Yu-Chia Hsu, An-Pin Chen, & Chun-Hung Wang. (2008). A RFID-enabled traceability system for the supply chain of live fish. 2008 IEEE International Conference on Automation and Logistics, 81–86. https://doi.org/10.1109/ICAL.2008.4636124.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 The Authors

This work is licensed under a Creative Commons Attribution 4.0 International License.
By publishing in this journal, authors agree to the following terms:
a) Authors retain copyright and grant the journal the right of first publication. The work is simultaneously licensed under the Creative Commons Attribution License, which permits sharing and adaptation of the work with appropriate credit to the authors and the journal.
b) Authors may enter into separate, additional agreements for non-exclusive distribution of the published version of the work (e.g., posting to an institutional repository or inclusion in a book), provided that proper credit is given to the original publication in this journal.



