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Abstract 

Beer production is a complex process involving multiple stages with diverse 

control requirements, including nonlinear biological reactions and energy-

intensive operations. To ensure consistent product quality, operational 

efficiency, and compatibility with digital manufacturing technologies, the 

selection of appropriate control strategies is critical. This study presents a 

structured methodology for the evaluation and integration of control system 

principles tailored to beer production. The process was decomposed into key 

operational stages, mashing, boiling, fermentation, conditioning, and 

packaging, and specific control objectives were defined for each. A multi-

criteria decision analysis (MCDA) framework, based on the Analytic Hierarchy 

Process (AHP), was applied to assess six control methods: PID, cascade, 

feedforward, fuzzy logic, model predictive control (MPC), and On/Off control. 

Evaluation criteria included control performance, ease of implementation, 

adaptability, energy efficiency, cost-effectiveness, and Industry 4.0 integration 

potential. The results indicated that a hybrid control approach, combining PID, 

fuzzy logic, and MPC, offers optimal performance across the production 

workflow. An integrated control architecture was designed to coordinate these 

methods within a scalable and intelligent automation framework. The proposed 

solution supports real-time monitoring, improved process stability, and 

readiness for future digital upgrades, providing a practical model for intelligent 

brewery operations. 
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Introduction 

Beer production holds a vital place in the global food and 

beverage industry, not only for its historical and cultural 

significance but also for its substantial contribution to 

agricultural resource utilization, technological advancement, 

and economic development. The brewing sector supports a 

wide range of upstream and downstream industries, from 

barley and hops cultivation to distribution, packaging, and 

equipment manufacturing, making it a crucial driver of food 

processing innovation. The global beer market is projected to 

continue its expansion, fueled by changing consumer 

preferences, urbanization, and the proliferation of both large-

scale breweries and craft microbreweries (Bamforth, 2016; 

Hornink, 2024).  

With this growing demand comes an equally pressing need 

for high-quality, diverse, and consistent beer products. 

Modern consumers expect flavor stability, precise alcohol 

content, and microbial safety across different batches and 

brands. This expectation places considerable stress on 

production systems, especially given the biological nature of 

key processes such as fermentation and maturation (Bamforth 

& Fox, 2023). In addition, rising energy costs, water usage 

concerns, environmental regulations, and sustainability 

objectives have pushed breweries to reconsider traditional 

manufacturing approaches. 

Despite centuries of development, beer production 

continues to face several critical operational challenges. These 

include high energy consumption during boiling and cooling 

phases, uncontrolled or suboptimal fermentation dynamics 

due to biological variability, process inconsistencies caused by 

raw material fluctuations, and hygiene risks in multi-stage 

handling systems. Moreover, legacy control systems, often 

manual or partially automated, struggle to detect and correct 

early deviations, resulting in product losses, increased waste, 

and inefficiencies. These challenges are further compounded 

by the complex interplay of thermal, chemical, and biological 
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sub-processes within brewing, which require precise 

monitoring and timely control interventions (Abunde et al., 

2019). 

To address these growing complexities, breweries have 

increasingly begun adopting automated control systems, 

which play a pivotal role in regulating critical process 

parameters such as temperature, pressure, pH, dissolved 

oxygen, and flow rate. The use of digital control technologies 

not only improves operational accuracy but also supports 

energy efficiency, data-driven decision-making, and 

predictive maintenance. For instance, accurate temperature 

control during fermentation is vital to prevent the formation of 

unwanted by-products like diacetyl and fusel alcohols, which 

can compromise the flavor and aroma of the final product. 

Similarly, maintaining optimal pH levels during mashing 

ensures effective enzyme activity and extraction efficiency, 

influencing both yield and taste. 

Several studies have demonstrated that automation 

significantly reduces specific energy consumption in 

breweries. For instance, Abunde et al. (Abunde et al., 2019) 

reported 8–15 % reductions in brewhouse thermal load and 10 

% shorter cooling cycles after implementing automated heat-

recovery and MPC-based energy scheduling. Similarly, 

Hermanucz et al. (Hermanucz & Geczi, 2022) documented up 

to 20 % energy savings in pilot breweries through advanced 

temperature sequencing and pump optimization. 

Several research efforts have explored advanced control 

strategies for beer production. Chai et al. (Chai et al., 2022) 

demonstrated the effectiveness of fuzzy logic and predictive 

control in managing nonlinear fermentation temperature 

dynamics, highlighting its robustness in uncertain conditions. 

Abunde et al. (Abunde et al., 2019) proposed a model 

predictive control (MPC) framework for optimizing 

brewhouse energy consumption and reducing peak demand 

loads. Other studies have analyzed the implementation of 

SCADA systems for real-time monitoring (De Oliveira et al., 

2021), neural network-based prediction models for 

fermentation kinetics, and the integration of IoT technologies 

in brewery environments (Tamo & Hilario-Tacuri, 2020). 

However, most of these investigations focus narrowly on 

isolated units or single-stage applications without considering 

the full complexity of the beer production lifecycle or the 

interdependencies between stages such as mashing, lautering, 

fermentation, and conditioning. 

Currently, literature lacks a comprehensive, system-level 

approach that combines classical and intelligent control 

principles into a coherent architecture. In particular, there is a 

significant research gap in the selection and integration of 

suitable control strategies that are tailored to the multivariable, 

nonlinear, and dynamic characteristics of beer production 

while also enabling flexibility, adaptability, and connectivity 

within Industry 4.0 frameworks. 

This research aims to bridge this gap by developing a 

structured methodology for the selection and integration of 

control system principles in beer production using a multi-

criteria decision analysis (MCDA) approach (Kizielewicz et 

al., 2021; Shekhovtsov et al., 2021). This approach considers 

process dynamics, control complexity, implementation 

feasibility, and technological compatibility across all major 

production stages. Specifically, the study examines the 

combined use of PID control, fuzzy logic, cascade control, and 

MPC to ensure optimal process performance. The 

methodology also evaluates the interoperability of these 

control principles with modern SCADA platforms, edge 

computing systems, and IoT-based data acquisition. 

The novelty of this work lies in the unified framework that 

not only selects the most appropriate control strategies for each 

brewing stage but also emphasizes process-wide integration 

and responsiveness. It further contributes to the field by 

aligning traditional control theory with smart manufacturing 

principles, thus providing a foundation for intelligent, 

adaptive, and energy-efficient brewery operations. The 

outcome is a scalable and implementable control system 

design that enhances both operational robustness and product 

quality, while supporting digital transformation goals in the 

brewing industry. 

Materials and methods 

The methodological approach adopted in this study aims to 

systematically evaluate, select, and integrate appropriate 

control strategies for various stages of the beer production 

process. Given the complexity, multivariable nature, and 

nonlinear dynamics of brewing operations, the methodology 

combines qualitative process analysis with quantitative 

decision-making tools. The study is structured around five key 

methodological phases, process analysis, definition of control 

requirements, identification of suitable control methods, 

application of MCDA, and the design of an integrated control 

architecture (Figure 1). 

 

Figure 1. General research methodology (own elaboration) 

Preparation of substituted cinnamic acids: The beer 

production process was first decomposed into its major 

operational stages, namely, mashing, lautering, boiling, 

fermentation, conditioning, and packaging (Figure 2). In the 

mashing stage, crushed malt is mixed with hot water to 

activate enzymes that convert starches into fermentable 

sugars.  

 

Figure 2. Process flow diagram of beer production process. 
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Lautering follows, where the liquid wort is separated from 

the spent grain. During boiling, the wort is sterilized and hops 

are added for bitterness and aroma. The fermentation stage 

involves yeast converting sugars into alcohol and CO2. 

Conditioning allows the beer to mature and develop clarity and 

flavour. Finally, packaging ensures product stability and 

prepares the beer for distribution. For each stage, key process 

variables (temperature, pressure, pH, flow rate, dissolved 

oxygen) and process constraints were identified based on 

industrial brewing practices and literature (Coldea et al., 2014; 

Zamudio Lara et al., 2022) (Table 1).  

 

Table 1. Key process variables and process constraints. 

While temperature, pressure, pH, flow rate, and dissolved 

oxygen are the dominant process variables, additional 

parameters, such as turbidity during lautering, specific gravity 

during fermentation, and CO2 concentration during 

conditioning, can further enhance control precision. Future 

implementations should integrate inline refractometers and 

CO2 sensors within the same control framework to improve 

stability and fault detection. Process dynamics were 

qualitatively assessed in terms of time-dependency, control 

sensitivity, disturbance levels, and actuator responsiveness. 

This step involved collaboration with brewery engineers and 

review of existing process data to construct simplified 

dynamic models (when available) or empirical rule-based 

relationships. These models supported the identification of 

critical control loops and potential automation gaps across the 

production line.  

Control requirements definition: Following the 

decomposition of the beer production process into its 

fundamental operational stages, specific control objectives 

were formulated to address the key parameters that directly 

influence product quality, process stability, and operational 

efficiency. These objectives reflect the functional needs of 

each stage and provide a foundation for control system 

selection and performance evaluation. 

In the mashing stage, temperature regulation is critical to 

ensure optimal enzymatic activity for starch-to-sugar 

conversion. The control system must maintain the mash 

temperature within a narrow band (typically 62–68 °C), 

despite potential disturbances such as variations in feed water 

temperature or inconsistent thermal conductivity of the mash. 

Similarly, during fermentation, precise temperature control is 

required to maintain yeast activity and avoid the formation of 

undesirable by-products. Given the sensitivity of yeast 

metabolism to thermal conditions, the system must ensure 

slow, stable temperature changes and be capable of responding 

to gradual heat generation by metabolic activity. pH control is 

essential during wort preparation to maintain the ideal 

enzymatic environment. The mashing process requires pH to 

be maintained in the range of 5.2 to 5.6 to optimize enzyme 

performance and prevent unwanted protein precipitation. This 

requires a control system capable of regulating the addition of 

acid or base in response to real-time pH fluctuations, which 

may be influenced by water composition, grain type, and 

thermal variations. 

During the transfer and packaging stages, precise flow and 

pressure control are required to ensure uniform liquid 

handling, reduce turbulence, and avoid product losses. Sudden 

changes in flow rates or pressure levels can lead to foaming, 

oxygen pickup, and inconsistent fill levels. Therefore, control 

systems in these stages must be fast-acting and capable of 

minimizing overshoot, especially during start-stop transitions. 

Oxygen dosing control is critical during wort aeration, 

immediately after boiling and before fermentation. The 

dissolved oxygen level must be increased to around 8–10 ppm 

to promote healthy yeast growth. Over-aeration or under-

aeration can both negatively impact fermentation kinetics and 

product quality. Consequently, the control mechanism must 

support fine-tuned regulation of oxygen flow and distribution. 

In both fermentation and storage tanks, liquid level control 

is necessary to prevent overflow, ensure volume consistency, 

and maintain hydrostatic pressure conditions. These tanks 

often require level measurement and actuation systems that 

respond smoothly to slow fill or draw-down processes, which 

are typical in batch or semi-continuous operations. 

Identification of candidate control strategies: To 

effectively address the control objectives defined for each 

stage of the beer production process, a range of candidate 

control strategies was identified, taking into consideration 

both traditional control approaches and more advanced, 

intelligent methods. The selection process was grounded in the 

dynamic characteristics of the process stages, the specific 

requirements of each control loop, and the broader goals of 

automation, efficiency, and integration within digital 

manufacturing systems. This study examines a range of 

control strategies, PID, cascade, feedforward, fuzzy logic, 

model predictive, and On/Off control, to determine which 

approach is most suitable for the process under analysis. 

PID control operates by continuously correcting the 

deviation between a measured variable and its desired value 

through proportional, integral, and derivative actions (Borase 

et al., 2021). The proportional term provides immediate 

response, the integral term removes steady-state error, and the 

derivative term predicts future trends to improve stability 
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(Dubey et al., 2022). Effective tuning ensures fast response 

without overshoot. Modern implementations include anti-

windup protection, derivative filtering, and adaptive gain 

adjustment to maintain performance under variable load 

conditions (Hägglund & Guzmán, 2024; Mohindru, 2024). 

Cascade control extends the PID concept by introducing an 

inner and an outer loop. The inner loop rapidly stabilizes a 

secondary variable that directly influences the main controlled 

variable (Liu et al., 2024). This hierarchical structure increases 

disturbance rejection capability and minimizes the effect of 

intermediate process fluctuations. Proper coordination 

between inner and outer loop dynamics is essential for 

achieving overall stability (Chen et al., 2024). Feedforward 

control functions as a proactive mechanism. It measures 

known disturbances before they affect the process and applies 

compensatory action directly to the actuator. This minimizes 

transient deviations and complements feedback control, which 

reacts only after an error has occurred. The accuracy of 

feedforward performance depends on the reliability of the 

disturbance model and sensor calibration (Duan & Kang, 

2024). 

FLC represents a knowledge-based approach that does not 

require an explicit mathematical model of the system 

(Eshbobaev et al., 2024). The controller uses linguistic 

variables (for example, “error is small” or “change is fast”) and 

rule-based reasoning to determine control actions. The 

inference mechanism combines expert rules and computes an 

output through fuzzification, rule evaluation, and 

defuzzification steps. FLC allows smooth nonlinear control 

behavior, robust performance under uncertainty, and easy 

interpretability by human operators (Mohindru, 2024). MPC is 

an optimization-based technique that calculates control actions 

by predicting future process behavior over a defined time 

horizon (Hu et al., 2021). Using a dynamic model, the 

controller solves an optimization problem at each sampling 

step to minimize deviations from the setpoint while 

considering process constraints and actuator limits. MPC’s 

ability to explicitly handle multivariable interactions and 

constraints makes it particularly powerful for complex 

dynamic systems (Schwenzer et al., 2021). 

On/Off control is the simplest form of regulation, where 

the actuator operates in only two states, fully on or fully off, 

depending on whether the process variable is above or below 

a threshold. Although it lacks proportional control and may 

introduce oscillations, it is robust, cost-effective, and easy to 

implement (Jamaludin et al., 2024). The use of hysteresis or 

dead-band logic reduces excessive switching and mechanical 

wear. Together, these control strategies represent 

complementary approaches ranging from basic binary logic to 

intelligent and predictive control. Their selection and 

integration depend on system complexity, available 

instrumentation, and the desired balance between 

performance, cost, and implementation effort. 

Before selecting the most appropriate control approach, the 

main operating principles and characteristics of the available 

strategies were first reviewed to establish a clear technical 

basis for comparison. Conventional control techniques such as 

PID control were included due to their widespread industrial 

use, ease of implementation, and well-understood tuning 

procedures. PID controllers are particularly effective in 

processes where dynamics are reasonably linear and 

disturbances are predictable, such as in temperature regulation 

during boiling or in pressure control during packaging. 

Cascade control was considered as a viable enhancement 

to PID control, particularly in stages like mashing or 

fermentation, where secondary loops, such as jacket 

temperature, can be tightly controlled to stabilize the primary 

variable, such as mash or wort temperature. This structure 

allows for improved disturbance rejection and finer control 

performance in multistage thermal processes. Feedforward 

control was also identified as an important strategy, especially 

where measurable disturbances can be anticipated, such as 

during wort transfer or when preheating ingredients. This 

method complements feedback control by proactively 

correcting for expected changes, thereby reducing response 

delay and improving overall system performance. Among 

advanced techniques, Fuzzy Logic Control (FLC) was selected 

for its ability to handle nonlinear, uncertain, and heuristic-

based systems. It is particularly suited to fermentation, where 

precise modeling is difficult and expert knowledge is often 

used to guide decision-making. FLC allows for intuitive rule-

based control that mimics human reasoning, making it 

valuable for managing complex biochemical reactions. 

MPC was included as a leading-edge strategy capable of 

handling multivariable interactions and process constraints. 

MPC is ideal for stages where optimal control actions need to 

be forecasted over a future time horizon, such as in energy 

management across the brewhouse or in coordinating 

fermentation temperature and oxygen dosing. For simpler 

applications, such as binary valve actuation, pump start-stop 

operations, or overflow prevention, On/Off control was also 

considered. Though limited in precision, it offers a cost-

effective solution where high-resolution control is not 

required. Each of these candidate control methods was 

characterized and comparatively analyzed across several 

dimensions: control complexity, ease of tuning, robustness to 

disturbances, scalability across multiple units, implementation 

cost, and compatibility with existing industrial platforms such 

as PLCs, SCADA, and distributed control systems. Relevant 

case studies and peer-reviewed publications were reviewed to 

support the technical and practical viability of each method, 

ensuring that the final selection would be grounded in both 

academic rigor and industrial applicability. 

To ensure reproducibility and technical transparency, we 

summarize the configuration of the advanced controllers 

adopted in this study. The FLC was designed as a knowledge-

based regulator with two inputs, the control error and its rate 

of change, and one output representing the actuator command. 

Each variable was partitioned into five qualitative levels (from 

low to high) using simple triangular membership functions to 

enable smooth transitions. A rule base of twenty-five “if–then” 

statements was constructed with domain experts and refined 

through simulation to reduce overshoot while maintaining 

short settling times. Inference followed the Mamdani scheme, 

and the final control signal was obtained via centroid 

defuzzification to avoid abrupt actuator movements. Sampling 

and filtering settings were chosen to match the process time 

constants, and bumpless transfer was enforced during mode 

changes to preserve stability. 

The model predictive control (MPC) algorithm employed 

a simplified dynamic model to forecast future process 

trajectories over a finite horizon and to compute an optimal 
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sequence of control actions subject to operational constraints. 

The performance objective balanced set-point tracking with 

smooth actuator variation, while explicit limits were imposed 

on process variables and manipulated inputs to respect 

equipment capabilities. At each sampling instant, the resulting 

quadratic optimization problem was solved with a standard 

real-time quadratic programming solver. In practice, a 

prediction horizon of ten sampling steps and a control horizon 

of three steps provided a robust compromise between accuracy 

and computational effort. Anti-windup and rate-limiting 

safeguards were also applied at the actuator interface to ensure 

repeatable behavior under disturbances and set-point changes. 

MCDA-based analysis: To ensure an objective and 

systematic selection of the most appropriate control strategies 

for each stage of beer production, a MCDA framework was 

adopted. This approach enables the structured evaluation of 

multiple alternatives against a set of predefined criteria, 

incorporating both qualitative and quantitative judgments. 

Among various MCDA techniques, the Analytic Hierarchy 

Process (AHP) was chosen due to its robustness, transparency, 

and ability to handle expert-driven decision-making processes 

with consistency checks (Janošovský et al., 2022; Pirdashti et 

al., 2009). 

In this study, six evaluation criteria were established to 

reflect the functional, technical, and economic aspects of 

control method selection. These included: 

(1) Control performance, which considers accuracy, system 

stability, responsiveness, and robustness to disturbances; 

(2) Ease of implementation, which accounts for the 

compatibility of control algorithms with existing industrial 

hardware and software platforms such as PLCs and SCADA, 

as well as the required level of operator expertise;  

(3) Adaptability to nonlinear or biologically complex 

systems, essential for stages such as fermentation where 

conventional linear models are insufficient; 

(4) Energy and resource efficiency, which evaluates the 

capacity of the control method to minimize energy 

consumption and raw material waste; 

(5) Cost-effectiveness, covering both initial investment and 

ongoing maintenance requirements; 

(6) Scalability and integration potential with Industry 4.0, 

reflecting the method’s suitability for future upgrades, sensor 

integration, and cloud-based monitoring. 

Pairwise comparisons of the criteria were conducted based 

on expert input from process control engineers, brewery 

managers, and academic researchers specializing in 

automation. The AHP method was used to derive weight 

coefficients for each criterion, reflecting their relative 

importance in the brewing context. For instance, control 

performance and adaptability to biological variability were 

weighted more heavily in stages like fermentation, while ease 

of implementation and cost-effectiveness had higher weights 

in packaging and transfer operations. 

Each control strategy, PID, cascade, feedforward, fuzzy 

logic, MPC, and On/Off, was evaluated against these criteria. 

Scores were assigned using a normalized scale (typically 1 to 

9) based on literature review, industrial case studies, and 

simulation-based performance data. Consistency ratios were 

calculated to ensure the reliability of expert judgments, with 

values below the standard threshold (0.1) indicating 

acceptable consistency. 

After aggregating the weighted scores, each control 

method received a composite performance index. These scores 

were then ranked, and the top-performing strategy or strategies 

were selected for each production stage. This decision-making 

process ensured that the chosen control approaches were not 

only theoretically sound but also practically viable and aligned 

with the brewery's operational goals and technological 

roadmap. The results of this analysis provided the basis for the 

development of a unified and stage-specific control system 

architecture. 

The final assignment of control strategies to each stage 

followed a quantitative ranking matrix derived from AHP 

weights. For example, if the weighted score difference 

between two strategies exceeded 0.5, the higher-ranked 

method was selected; if within 0.5, a hybrid (e.g., PID–FLC) 

configuration was adopted. This rule-based decision threshold 

ensured consistency and minimized subjective bias. 

Integrated control architecture: Based on the outcomes 

of the multi-criteria decision analysis, the selected control 

strategies were integrated into a comprehensive process-wide 

control architecture tailored to the dynamics and operational 

requirements of each stage of beer production. This 

architecture was developed to ensure seamless coordination 

between different control loops and to provide an efficient 

interface for process monitoring, fault detection, and 

performance optimization. 

The proposed control architecture supports both 

centralized and distributed control system configurations, 

allowing flexibility based on the scale and complexity of the 

brewery. At the local level, each production stage, such as 

mashing, fermentation, or packaging, is governed by dedicated 

controllers implementing the most suitable control technique. 

For example, PID or cascade control may be used for 

temperature regulation in mashing and boiling, while fuzzy 

logic or model predictive control is applied in more complex 

and nonlinear stages like fermentation. On/Off control 

mechanisms are employed in auxiliary systems such as filling 

lines or cleaning operations, where binary control suffices. 

Advanced control strategies were adapted for real-time 

deployment within industrial controller platforms. The control 

algorithms were structured to account for system delays, 

actuator dynamics, and sensor accuracy, ensuring robust 

performance under varying operating conditions. Each local 

loop was tuned to achieve its designated control objectives, 

including setpoint tracking, disturbance rejection, and energy-

efficient operation. 

To ensure reliability and integration across the entire 

system, supervisory layers were designed to oversee data 

exchange between local loops, perform inter-process 

coordination, and handle alarm and safety functions. The 

architecture also supports hierarchical control structures, 

enabling supervisory control to intervene in setpoint 

adjustments and control mode switching based on process 

status and production scheduling.  

Furthermore, the architecture was evaluated for its 

compatibility with modern Industry 4.0 technologies. It 

includes capabilities for real-time data acquisition through 

networked sensors, remote access to process information, and 
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integration with digital dashboards for operational 

transparency. The system is also designed to accommodate 

predictive analytics by leveraging historical process data to 

anticipate deviations and optimize performance. This ensures 

that the brewery’s control infrastructure is not only effective 

under current operating conditions but also scalable and 

adaptable for future technological enhancements. 

Results and discussion 

The implementation of the proposed methodology resulted 

in a structured selection and integration of control strategies 

tailored to the specific dynamics of each stage in the beer 

production process (Table 2). The findings are discussed in 

terms of the performance of control methods selected through 

the MCDA, their suitability for real-world applications, and 

the benefits of the integrated control architecture. 

 

Table 2. The specific dynamics of each stage in the beer 

production process. 

Control strategy selection outcomes 

Based on the AHP-based MCDA framework, control 

methods were ranked for each production stage (Table 3). The 

results demonstrated that no single control strategy is 

universally optimal across all stages due to the variability in 

process dynamics and control requirements. Figure 3 presents 

the normalized performance scores of the six control strategies 

evaluated according to the six decision criteria defined in the 

MCDA framework, control performance, ease of 

implementation, adaptability, efficiency, cost-effectiveness, 

and potential for Industry 4.0 integration. Each bar represents 

the relative strength of a method in a specific criterion, scaled 

between 0 and 1.  

Fuzzy Logic Control achieved the highest overall score, 

showing superior adaptability and high efficiency under 

nonlinear conditions. MPC ranked next, excelling in energy 

efficiency and digital-integration capability but requiring 

greater implementation effort. 

 

Figure 3. Comparing control methods by evaluation 

criteria. 

PID and cascade controllers demonstrated strong 

controllability and ease of deployment, whereas feedforward 

control contributed moderate improvements in 

responsiveness. The On/Off approach scored highest in 

simplicity and cost but lowest in precision. Overall, the 

diagram illustrates how different techniques balance 

performance and practicality, highlighting the trade-offs that 

guided their final ranking in the decision analysis 

For temperature regulation in mashing and boiling, PID 

control emerged as the most suitable option due to its 

simplicity, proven effectiveness in linear systems, and ease of 

integration with existing programmable logic controllers 

(PLCs). In fermentation, where the process is nonlinear and 

sensitive to biological variability, FLC outperformed other 

strategies by providing robust control under uncertainty and 

enabling operator knowledge to be encoded into the control 

rules. 

In stages such as wort transfer and packaging, which 

involve rapid changes and require high responsiveness, 

cascade control and feedforward control were found to be 

effective. Cascade control enabled secondary variables (e.g., 

jacket temperature or pressure) to be tightly regulated, thereby 

stabilizing the primary variable more efficiently. Feedforward 

control added an anticipatory element, improving system 

response to predictable disturbances, such as volumetric 

surges during transfer. 

 

Table 3. Control strategy performance evaluation results  
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For oxygen dosing and level control, where rapid feedback 

is required with relatively straightforward actuation logic, 

On/Off control was adequate and cost-effective. On the other 

hand, in applications where multiple variables and constraints 

must be managed simultaneously, such as energy optimization 

during wort boiling and conditioning, MPC provided superior 

performance. MPC allowed for the coordination of variables 

across interconnected systems and forecasted control actions 

based on future process trajectories. 

Composite performance ranking 

The composite scores generated through MCDA 

confirmed that PID control remains a practical and effective 

baseline solution for stages with predictable, linear behavior. 

FLC and MPC received the highest scores for adaptability and 

control precision in nonlinear and multivariable systems, 

although their implementation required higher computational 

resources and tuning efforts. Cascade control was recognized 

for improving disturbance rejection in coupled thermal 

systems, while feedforward control was valuable for 

improving responsiveness without increasing feedback loop 

gain (Table 4). These rankings align with observations from 

industrial brewing operations for complex, batch-oriented 

processes. 

 

Table 4. Recommended control method by process stage. 

Integrated architecture validation 

Figure 4 illustrates an integrated control architecture for a 

smart beer production system, combining process operations 

with automation and digital monitoring technologies. The 

proposed integrated control architecture was evaluated based 

on its ability to coordinate multiple control loops and support 

process-wide stability.  

Simulation-based validation demonstrated that combining 

PID and FLC in a layered structure for fermentation improved 

control accuracy by 15% compared to single-loop PID-only 

configurations (Figure 4). Similarly, energy consumption 

during wort boiling was reduced by approximately 12% when 

MPC was employed, owing to its ability to predict optimal 

heating profiles while minimizing thermal overshoot. 

The architecture also exhibited strong compatibility with 

digitalization tools such as remote data acquisition, real-time 

alarms, and historical data analysis. The modular design of the 

system facilitates scalability and allows individual units to be 

upgraded without disrupting the overall process. This 

modularity supports progressive adoption of Industry 4.0 

features, including cloud-based analytics and predictive 

control. 

Practical considerations and limitations 

While advanced control strategies like MPC and FLC 

showed clear benefits, their practical implementation poses 

certain challenges. These include the need for skilled 

personnel to manage algorithm configuration and tuning, 

greater reliance on high-quality sensor data, and increased 

demands on computational resources. For small-scale 

breweries, the cost and complexity of implementing such 

strategies may not be justified unless integrated into broader 

digital transformation efforts. 

Nonetheless, the combination of conventional and 

advanced control methods within a unified architecture offers 

a flexible solution that can be adapted based on scale, budget, 

and technical expertise. The methodology is also applicable to 

other food and beverage production systems with similar 

dynamic and nonlinear characteristics. 

 

Figure 4. Control architecture of the brewing process. 



Yusupov, Turakulov & Yusupbekov. Brazilian Journal of Biosystems Engineering (2025), 19 1295 
 

8 

 

Conclusions 

This study presented a comprehensive methodology for the 

selection and integration of control system principles tailored 

to the beer production process. By systematically analyzing 

each stage of production, from mashing and boiling to 

fermentation and packaging, the study identified key control 

objectives and evaluated candidate control strategies using a 

MCDA framework based on the AHP. The evaluation 

considered multiple technical and practical criteria, including 

control performance, ease of implementation, adaptability to 

nonlinear processes, energy efficiency, cost-effectiveness, and 

compatibility with Industry 4.0 technologies. 

The results revealed that no single control strategy is 

universally optimal across all production stages. Rather, a 

combination of classical and advanced methods is necessary 

to meet the diverse control requirements. PID control remains 

a reliable choice for linear and well-understood processes such 

as temperature regulation during mashing, while FLC and 

MPC demonstrated superior performance in managing 

complex, nonlinear, and biologically sensitive stages like 

fermentation. Cascade and feedforward control methods were 

effective in improving response times and reducing 

disturbances in coupled thermal and transfer systems. On/Off 

control provided a simple but adequate solution for binary 

operations such as tank level management and valve actuation 

in packaging lines. An integrated control architecture was 

proposed, incorporating selected strategies into a process-wide 

automation framework. This architecture was shown to be 

compatible with industrial platforms and adaptable to smart 

manufacturing environments, enabling real-time data 

acquisition, predictive analytics, and enhanced operational 

transparency. 

Overall, the study highlights the importance of context-

specific control strategy selection in complex food and 

beverage manufacturing environments. The proposed 

methodology and findings offer practical guidance for 

engineers and decision-makers seeking to modernize and 

optimize brewery operations through intelligent automation. 

Future work may include experimental validation in a pilot-

scale brewery and the application of AI-based adaptive control 

methods to further improve system autonomy and robustness. 
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