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Introduction

Abstract

Beer production is a complex process involving multiple stages with diverse
control requirements, including nonlinear biological reactions and energy-
intensive operations. To ensure consistent product quality, operational
efficiency, and compatibility with digital manufacturing technologies, the
selection of appropriate control strategies is critical. This study presents a
structured methodology for the evaluation and integration of control system
principles tailored to beer production. The process was decomposed into key
operational stages, mashing, boiling, fermentation, conditioning, and
packaging, and specific control objectives were defined for each. A multi-
criteria decision analysis (MCDA) framework, based on the Analytic Hierarchy
Process (AHP), was applied to assess six control methods: PID, cascade,
feedforward, fuzzy logic, model predictive control (MPC), and On/Off control.
Evaluation criteria included control performance, ease of implementation,
adaptability, energy efficiency, cost-effectiveness, and Industry 4.0 integration
potential. The results indicated that a hybrid control approach, combining PID,
fuzzy logic, and MPC, offers optimal performance across the production
workflow. An integrated control architecture was designed to coordinate these
methods within a scalable and intelligent automation framework. The proposed
solution supports real-time monitoring, improved process stability, and
readiness for future digital upgrades, providing a practical model for intelligent
brewery operations.
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brands. This expectation places considerable stress on

Beer production holds a vital place in the global food and
beverage industry, not only for its historical and cultural
significance but also for its substantial contribution to
agricultural resource utilization, technological advancement,
and economic development. The brewing sector supports a
wide range of upstream and downstream industries, from
barley and hops cultivation to distribution, packaging, and
equipment manufacturing, making it a crucial driver of food
processing innovation. The global beer market is projected to
continue its expansion, fueled by changing consumer
preferences, urbanization, and the proliferation of both large-
scale breweries and craft microbreweries (Bamforth, 2016;
Hornink, 2024).

With this growing demand comes an equally pressing need
for high-quality, diverse, and consistent beer products.
Modern consumers expect flavor stability, precise alcohol
content, and microbial safety across different batches and

production systems, especially given the biological nature of
key processes such as fermentation and maturation (Bamforth
& Fox, 2023). In addition, rising energy costs, water usage
concerns, environmental regulations, and sustainability
objectives have pushed breweries to reconsider traditional
manufacturing approaches.

Despite centuries of development, beer production
continues to face several critical operational challenges. These
include high energy consumption during boiling and cooling
phases, uncontrolled or suboptimal fermentation dynamics
due to biological variability, process inconsistencies caused by
raw material fluctuations, and hygiene risks in multi-stage
handling systems. Moreover, legacy control systems, often
manual or partially automated, struggle to detect and correct
early deviations, resulting in product losses, increased waste,
and inefficiencies. These challenges are further compounded
by the complex interplay of thermal, chemical, and biological
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sub-processes within brewing, which require precise
monitoring and timely control interventions (Abunde et al.,
2019).

To address these growing complexities, breweries have
increasingly begun adopting automated control systems,
which play a pivotal role in regulating critical process
parameters such as temperature, pressure, pH, dissolved
oxygen, and flow rate. The use of digital control technologies
not only improves operational accuracy but also supports
energy efficiency, data-driven decision-making, and
predictive maintenance. For instance, accurate temperature
control during fermentation is vital to prevent the formation of
unwanted by-products like diacetyl and fusel alcohols, which
can compromise the flavor and aroma of the final product.
Similarly, maintaining optimal pH levels during mashing
ensures effective enzyme activity and extraction efficiency,
influencing both yield and taste.

Several studies have demonstrated that automation
significantly reduces specific energy consumption in
breweries. For instance, Abunde et al. (Abunde et al., 2019)
reported 8—15 % reductions in brewhouse thermal load and 10
% shorter cooling cycles after implementing automated heat-
recovery and MPC-based energy scheduling. Similarly,
Hermanucz et al. (Hermanucz & Geczi, 2022) documented up
to 20 % energy savings in pilot breweries through advanced
temperature sequencing and pump optimization.

Several research efforts have explored advanced control
strategies for beer production. Chai et al. (Chai et al., 2022)
demonstrated the effectiveness of fuzzy logic and predictive
control in managing nonlinear fermentation temperature
dynamics, highlighting its robustness in uncertain conditions.
Abunde et al. (Abunde et al., 2019) proposed a model
predictive control (MPC) framework for optimizing
brewhouse energy consumption and reducing peak demand
loads. Other studies have analyzed the implementation of
SCADA systems for real-time monitoring (De Oliveira et al.,
2021), neural network-based prediction models for
fermentation kinetics, and the integration of [oT technologies
in brewery environments (Tamo & Hilario-Tacuri, 2020).
However, most of these investigations focus narrowly on
isolated units or single-stage applications without considering
the full complexity of the beer production lifecycle or the
interdependencies between stages such as mashing, lautering,
fermentation, and conditioning.

Currently, literature lacks a comprehensive, system-level
approach that combines classical and intelligent control
principles into a coherent architecture. In particular, there is a
significant research gap in the selection and integration of
suitable control strategies that are tailored to the multivariable,
nonlinear, and dynamic characteristics of beer production
while also enabling flexibility, adaptability, and connectivity
within Industry 4.0 frameworks.

This research aims to bridge this gap by developing a
structured methodology for the selection and integration of
control system principles in beer production using a multi-
criteria decision analysis (MCDA) approach (Kizielewicz et
al., 2021; Shekhovtsov et al., 2021). This approach considers
process dynamics, control complexity, implementation
feasibility, and technological compatibility across all major
production stages. Specifically, the study examines the
combined use of PID control, fuzzy logic, cascade control, and

MPC to ensure optimal process performance. The
methodology also evaluates the interoperability of these
control principles with modern SCADA platforms, edge
computing systems, and loT-based data acquisition.

The novelty of this work lies in the unified framework that
not only selects the most appropriate control strategies for each
brewing stage but also emphasizes process-wide integration
and responsiveness. It further contributes to the field by
aligning traditional control theory with smart manufacturing
principles, thus providing a foundation for intelligent,
adaptive, and energy-efficient brewery operations. The
outcome is a scalable and implementable control system
design that enhances both operational robustness and product
quality, while supporting digital transformation goals in the
brewing industry.

Materials and methods

The methodological approach adopted in this study aims to
systematically evaluate, select, and integrate appropriate
control strategies for various stages of the beer production
process. Given the complexity, multivariable nature, and
nonlinear dynamics of brewing operations, the methodology
combines qualitative process analysis with quantitative
decision-making tools. The study is structured around five key
methodological phases, process analysis, definition of control
requirements, identification of suitable control methods,
application of MCDA, and the design of an integrated control
architecture (Figure 1).

| Process analysis |

)

| Control requirement definition |

v

| Control method identification |
v

| MCDA |
¥

| Control architecture design |

Figure 1. General research methodology (own elaboration)

Preparation of substituted cinnamic acids: The beer
production process was first decomposed into its major
operational stages, namely, mashing, lautering, boiling,
fermentation, conditioning, and packaging (Figure 2). In the
mashing stage, crushed malt is mixed with hot water to
activate enzymes that convert starches into fermentable
sugars.
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Figure 2. Process flow diagram of beer production process.
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Lautering follows, where the liquid wort is separated from
the spent grain. During boiling, the wort is sterilized and hops
are added for bitterness and aroma. The fermentation stage
involves yeast converting sugars into alcohol and CO,.
Conditioning allows the beer to mature and develop clarity and
flavour. Finally, packaging ensures product stability and
prepares the beer for distribution. For each stage, key process
variables (temperature, pressure, pH, flow rate, dissolved
oxygen) and process constraints were identified based on
industrial brewing practices and literature (Coldea et al., 2014;
Zamudio Lara et al., 2022) (Table 1).

Process Key  process | Typical Operating | Process Constraints
stage variables Range / Assumptions
Mashing Temperature, | Temp: 62-68°C; pH:| Enzyme  activity is
pH, time 52-56; Time: 60-| sensitive to
90 min temperature/pH;

excessive  temperature
inactivates enzymes

Lautering Flow rate, | Flow: 1-2 L/min/m? | Avoid channeling and
turbidity, bed | Pressure drop: <0.5 bar | grain  bed compaction;
pressure maintain uniform filtration

Boiling Temperature, Temp: ~100°C;| Must reach full boil for
evaporation Pressure: atmospheric | sterilization;  excessive

rate, pressure | or slightly above evaporation leads o

volume loss

Fermentation | Temperature, | Temp: 18-22°C (ales), | Yeast activity depends on
pH, dissolved | 8-14°C (lagers); pH:|temp/DO; CO. buildup
oxygen, 4.0-4.5; DO: 8-10 ppm | must be controlled

pressure

Conditioning | Temperature, | Temp: 0-4°C, CO,:| Low temp required for

pressure, 2.2-2 8 volumes clarity, over-carbonation
dissolved CO, risks pressure buildup
Packaging Flow rate, CO, | Flow: variable; CO,:| Maintain sterility;
pressure, 24-26 volumes; | consistent fill volumes;
temperature Temp: <10°C prevent foaming and

oxygen pickup

Table 1. Key process variables and process constraints.

While temperature, pressure, pH, flow rate, and dissolved
oxygen are the dominant process variables, additional
parameters, such as turbidity during lautering, specific gravity
during fermentation, and CO2z concentration during
conditioning, can further enhance control precision. Future
implementations should integrate inline refractometers and
CO2 sensors within the same control framework to improve
stability and fault detection. Process dynamics were
qualitatively assessed in terms of time-dependency, control
sensitivity, disturbance levels, and actuator responsiveness.
This step involved collaboration with brewery engineers and
review of existing process data to construct simplified
dynamic models (when available) or empirical rule-based
relationships. These models supported the identification of
critical control loops and potential automation gaps across the
production line.

Control requirements definition: Following the
decomposition of the beer production process into its
fundamental operational stages, specific control objectives
were formulated to address the key parameters that directly
influence product quality, process stability, and operational
efficiency. These objectives reflect the functional needs of

each stage and provide a foundation for control system
selection and performance evaluation.

In the mashing stage, temperature regulation is critical to
ensure optimal enzymatic activity for starch-to-sugar
conversion. The control system must maintain the mash
temperature within a narrow band (typically 62-68 °C),
despite potential disturbances such as variations in feed water
temperature or inconsistent thermal conductivity of the mash.
Similarly, during fermentation, precise temperature control is
required to maintain yeast activity and avoid the formation of
undesirable by-products. Given the sensitivity of yeast
metabolism to thermal conditions, the system must ensure
slow, stable temperature changes and be capable of responding
to gradual heat generation by metabolic activity. pH control is
essential during wort preparation to maintain the ideal
enzymatic environment. The mashing process requires pH to
be maintained in the range of 5.2 to 5.6 to optimize enzyme
performance and prevent unwanted protein precipitation. This
requires a control system capable of regulating the addition of
acid or base in response to real-time pH fluctuations, which
may be influenced by water composition, grain type, and
thermal variations.

During the transfer and packaging stages, precise flow and
pressure control are required to ensure uniform liquid
handling, reduce turbulence, and avoid product losses. Sudden
changes in flow rates or pressure levels can lead to foaming,
oxygen pickup, and inconsistent fill levels. Therefore, control
systems in these stages must be fast-acting and capable of
minimizing overshoot, especially during start-stop transitions.
Oxygen dosing control is critical during wort aeration,
immediately after boiling and before fermentation. The
dissolved oxygen level must be increased to around 8—10 ppm
to promote healthy yeast growth. Over-aeration or under-
aeration can both negatively impact fermentation kinetics and
product quality. Consequently, the control mechanism must
support fine-tuned regulation of oxygen flow and distribution.

In both fermentation and storage tanks, liquid level control
is necessary to prevent overflow, ensure volume consistency,
and maintain hydrostatic pressure conditions. These tanks
often require level measurement and actuation systems that
respond smoothly to slow fill or draw-down processes, which
are typical in batch or semi-continuous operations.

Identification of candidate control strategies: To
effectively address the control objectives defined for each
stage of the beer production process, a range of candidate
control strategies was identified, taking into consideration
both traditional control approaches and more advanced,
intelligent methods. The selection process was grounded in the
dynamic characteristics of the process stages, the specific
requirements of each control loop, and the broader goals of
automation, efficiency, and integration within digital
manufacturing systems. This study examines a range of
control strategies, PID, cascade, feedforward, fuzzy logic,
model predictive, and On/Off control, to determine which
approach is most suitable for the process under analysis.

PID control operates by continuously correcting the
deviation between a measured variable and its desired value
through proportional, integral, and derivative actions (Borase
et al,, 2021). The proportional term provides immediate
response, the integral term removes steady-state error, and the
derivative term predicts future trends to improve stability
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(Dubey et al., 2022). Effective tuning ensures fast response
without overshoot. Modern implementations include anti-
windup protection, derivative filtering, and adaptive gain
adjustment to maintain performance under variable load
conditions (Higglund & Guzman, 2024; Mohindru, 2024).

Cascade control extends the PID concept by introducing an
inner and an outer loop. The inner loop rapidly stabilizes a
secondary variable that directly influences the main controlled
variable (Liu et al., 2024). This hierarchical structure increases
disturbance rejection capability and minimizes the effect of
intermediate process fluctuations. Proper coordination
between inner and outer loop dynamics is essential for
achieving overall stability (Chen et al., 2024). Feedforward
control functions as a proactive mechanism. It measures
known disturbances before they affect the process and applies
compensatory action directly to the actuator. This minimizes
transient deviations and complements feedback control, which
reacts only after an error has occurred. The accuracy of
feedforward performance depends on the reliability of the
disturbance model and sensor calibration (Duan & Kang,
2024).

FLC represents a knowledge-based approach that does not
require an explicit mathematical model of the system
(Eshbobaev et al.,, 2024). The controller uses linguistic
variables (for example, “error is small” or “change is fast”) and
rule-based reasoning to determine control actions. The
inference mechanism combines expert rules and computes an
output through fuzzification, rule evaluation, and
defuzzification steps. FLC allows smooth nonlinear control
behavior, robust performance under uncertainty, and easy
interpretability by human operators (Mohindru, 2024). MPC is
an optimization-based technique that calculates control actions
by predicting future process behavior over a defined time
horizon (Hu et al., 2021). Using a dynamic model, the
controller solves an optimization problem at each sampling
step to minimize deviations from the setpoint while
considering process constraints and actuator limits. MPC’s
ability to explicitly handle multivariable interactions and
constraints makes it particularly powerful for complex
dynamic systems (Schwenzer et al., 2021).

On/Off control is the simplest form of regulation, where
the actuator operates in only two states, fully on or fully off,
depending on whether the process variable is above or below
a threshold. Although it lacks proportional control and may
introduce oscillations, it is robust, cost-effective, and easy to
implement (Jamaludin et al., 2024). The use of hysteresis or
dead-band logic reduces excessive switching and mechanical
wear. Together, these control strategies represent
complementary approaches ranging from basic binary logic to
intelligent and predictive control. Their selection and
integration depend on system complexity, available
instrumentation, and the desired balance between
performance, cost, and implementation effort.

Before selecting the most appropriate control approach, the
main operating principles and characteristics of the available
strategies were first reviewed to establish a clear technical
basis for comparison. Conventional control techniques such as
PID control were included due to their widespread industrial
use, ease of implementation, and well-understood tuning
procedures. PID controllers are particularly effective in
processes where dynamics are reasonably linear and

disturbances are predictable, such as in temperature regulation
during boiling or in pressure control during packaging.

Cascade control was considered as a viable enhancement
to PID control, particularly in stages like mashing or
fermentation, where secondary loops, such as jacket
temperature, can be tightly controlled to stabilize the primary
variable, such as mash or wort temperature. This structure
allows for improved disturbance rejection and finer control
performance in multistage thermal processes. Feedforward
control was also identified as an important strategy, especially
where measurable disturbances can be anticipated, such as
during wort transfer or when preheating ingredients. This
method complements feedback control by proactively
correcting for expected changes, thereby reducing response
delay and improving overall system performance. Among
advanced techniques, Fuzzy Logic Control (FLC) was selected
for its ability to handle nonlinear, uncertain, and heuristic-
based systems. It is particularly suited to fermentation, where
precise modeling is difficult and expert knowledge is often
used to guide decision-making. FLC allows for intuitive rule-
based control that mimics human reasoning, making it
valuable for managing complex biochemical reactions.

MPC was included as a leading-edge strategy capable of
handling multivariable interactions and process constraints.
MPC is ideal for stages where optimal control actions need to
be forecasted over a future time horizon, such as in energy
management across the brewhouse or in coordinating
fermentation temperature and oxygen dosing. For simpler
applications, such as binary valve actuation, pump start-stop
operations, or overflow prevention, On/Off control was also
considered. Though limited in precision, it offers a cost-
effective solution where high-resolution control is not
required. Each of these candidate control methods was
characterized and comparatively analyzed across several
dimensions: control complexity, ease of tuning, robustness to
disturbances, scalability across multiple units, implementation
cost, and compatibility with existing industrial platforms such
as PLCs, SCADA, and distributed control systems. Relevant
case studies and peer-reviewed publications were reviewed to
support the technical and practical viability of each method,
ensuring that the final selection would be grounded in both
academic rigor and industrial applicability.

To ensure reproducibility and technical transparency, we
summarize the configuration of the advanced controllers
adopted in this study. The FLC was designed as a knowledge-
based regulator with two inputs, the control error and its rate
of change, and one output representing the actuator command.
Each variable was partitioned into five qualitative levels (from
low to high) using simple triangular membership functions to
enable smooth transitions. A rule base of twenty-five “if-then”
statements was constructed with domain experts and refined
through simulation to reduce overshoot while maintaining
short settling times. Inference followed the Mamdani scheme,
and the final control signal was obtained via centroid
defuzzification to avoid abrupt actuator movements. Sampling
and filtering settings were chosen to match the process time
constants, and bumpless transfer was enforced during mode
changes to preserve stability.

The model predictive control (MPC) algorithm employed
a simplified dynamic model to forecast future process
trajectories over a finite horizon and to compute an optimal
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sequence of control actions subject to operational constraints.
The performance objective balanced set-point tracking with
smooth actuator variation, while explicit limits were imposed
on process variables and manipulated inputs to respect
equipment capabilities. At each sampling instant, the resulting
quadratic optimization problem was solved with a standard
real-time quadratic programming solver. In practice, a
prediction horizon of ten sampling steps and a control horizon
of three steps provided a robust compromise between accuracy
and computational effort. Anti-windup and rate-limiting
safeguards were also applied at the actuator interface to ensure
repeatable behavior under disturbances and set-point changes.

MCDA-based analysis: To ensure an objective and
systematic selection of the most appropriate control strategies
for each stage of beer production, a MCDA framework was
adopted. This approach enables the structured evaluation of
multiple alternatives against a set of predefined criteria,
incorporating both qualitative and quantitative judgments.
Among various MCDA techniques, the Analytic Hierarchy
Process (AHP) was chosen due to its robustness, transparency,
and ability to handle expert-driven decision-making processes
with consistency checks (JanoSovsky et al., 2022; Pirdashti et
al., 2009).

In this study, six evaluation criteria were established to
reflect the functional, technical, and economic aspects of
control method selection. These included:

(1) Control performance, which considers accuracy, system
stability, responsiveness, and robustness to disturbances;

(2) Ease of implementation, which accounts for the
compatibility of control algorithms with existing industrial
hardware and software platforms such as PLCs and SCADA,
as well as the required level of operator expertise;

(3) Adaptability to nonlinear or biologically complex
systems, essential for stages such as fermentation where
conventional linear models are insufficient;

(4) Energy and resource efficiency, which evaluates the
capacity of the control method to minimize energy
consumption and raw material waste;

(5) Cost-effectiveness, covering both initial investment and
ongoing maintenance requirements;

(6) Scalability and integration potential with Industry 4.0,
reflecting the method’s suitability for future upgrades, sensor
integration, and cloud-based monitoring.

Pairwise comparisons of the criteria were conducted based
on expert input from process control engineers, brewery
managers, and academic researchers specializing in
automation. The AHP method was used to derive weight
coefficients for each criterion, reflecting their relative
importance in the brewing context. For instance, control
performance and adaptability to biological variability were
weighted more heavily in stages like fermentation, while ease
of implementation and cost-effectiveness had higher weights
in packaging and transfer operations.

Each control strategy, PID, cascade, feedforward, fuzzy
logic, MPC, and On/Off, was evaluated against these criteria.
Scores were assigned using a normalized scale (typically 1 to
9) based on literature review, industrial case studies, and
simulation-based performance data. Consistency ratios were
calculated to ensure the reliability of expert judgments, with

values below the standard threshold (0.1) indicating
acceptable consistency.

After aggregating the weighted scores, each control
method received a composite performance index. These scores
were then ranked, and the top-performing strategy or strategies
were selected for each production stage. This decision-making
process ensured that the chosen control approaches were not
only theoretically sound but also practically viable and aligned
with the brewery's operational goals and technological
roadmap. The results of this analysis provided the basis for the
development of a unified and stage-specific control system
architecture.

The final assignment of control strategies to each stage
followed a quantitative ranking matrix derived from AHP
weights. For example, if the weighted score difference
between two strategies exceeded 0.5, the higher-ranked
method was selected; if within 0.5, a hybrid (e.g., PID-FLC)
configuration was adopted. This rule-based decision threshold
ensured consistency and minimized subjective bias.

Integrated control architecture: Based on the outcomes
of the multi-criteria decision analysis, the selected control
strategies were integrated into a comprehensive process-wide
control architecture tailored to the dynamics and operational
requirements of each stage of beer production. This
architecture was developed to ensure seamless coordination
between different control loops and to provide an efficient
interface for process monitoring, fault detection, and
performance optimization.

The proposed control architecture supports both
centralized and distributed control system configurations,
allowing flexibility based on the scale and complexity of the
brewery. At the local level, each production stage, such as
mashing, fermentation, or packaging, is governed by dedicated
controllers implementing the most suitable control technique.
For example, PID or cascade control may be used for
temperature regulation in mashing and boiling, while fuzzy
logic or model predictive control is applied in more complex
and nonlinear stages like fermentation. On/Off control
mechanisms are employed in auxiliary systems such as filling
lines or cleaning operations, where binary control suffices.

Advanced control strategies were adapted for real-time
deployment within industrial controller platforms. The control
algorithms were structured to account for system delays,
actuator dynamics, and sensor accuracy, ensuring robust
performance under varying operating conditions. Each local
loop was tuned to achieve its designated control objectives,
including setpoint tracking, disturbance rejection, and energy-
efficient operation.

To ensure reliability and integration across the entire
system, supervisory layers were designed to oversee data
exchange between local loops, perform inter-process
coordination, and handle alarm and safety functions. The
architecture also supports hierarchical control structures,
enabling supervisory control to intervene in setpoint
adjustments and control mode switching based on process
status and production scheduling.

Furthermore, the architecture was evaluated for its
compatibility with modern Industry 4.0 technologies. It
includes capabilities for real-time data acquisition through
networked sensors, remote access to process information, and
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integration with digital dashboards for operational
transparency. The system is also designed to accommodate
predictive analytics by leveraging historical process data to
anticipate deviations and optimize performance. This ensures
that the brewery’s control infrastructure is not only effective
under current operating conditions but also scalable and
adaptable for future technological enhancements.

Results and discussion

The implementation of the proposed methodology resulted
in a structured selection and integration of control strategies
tailored to the specific dynamics of each stage in the beer
production process (Table 2). The findings are discussed in
terms of the performance of control methods selected through
the MCDA, their suitability for real-world applications, and
the benefits of the integrated control architecture.

Process Time- Control Disturbance Actuator

stage Dependency sensitivity Levels Responsiveness

Mashing Moderate High  (enzyme | Medium (raw | Moderate (heaters
(mins) activity 1s | matenal and mixers)

sensitive to | vanability)
temp/pH)

Lautering Slow (flow | Medium  (flow | High (grain bed | Low to moderate
stabilizes and pressure | structure (valves, pumps)
gradually) affect clarity) varies)

Boiling Fast (heat | Low Low  (mainly | High (steam or
transfer is | (maintaining thermal  load | electric heaters)
rapid) boiling Is steady | vanations)

state)

Fermentation | Very slow | High (small | Very high | Low (chillers,

(hours to days) | temp/DO (biological aeration control)
changes affect | vanability)
yeast)

Conditioning | Slow Medium Medium Moderate (cooling
(stabilization (temp/CO- (ambient jackets, CO:
over days) levels impact | fluctuations) valves)

quality)

Packaging Fast (seconds | High (sensitive | High (bottle fill, | High  (pneumatic
to minutes) to pressure and | CO; loss) systems, valves)

flow)

Table 2. The specific dynamics of each stage in the beer
production process.

Control strategy selection outcomes

Based on the AHP-based MCDA framework, control
methods were ranked for each production stage (Table 3). The
results demonstrated that no single control strategy is
universally optimal across all stages due to the variability in
process dynamics and control requirements. Figure 3 presents
the normalized performance scores of the six control strategies
evaluated according to the six decision criteria defined in the
MCDA framework, control performance, ease of
implementation, adaptability, efficiency, cost-effectiveness,
and potential for Industry 4.0 integration. Each bar represents
the relative strength of a method in a specific criterion, scaled
between 0 and 1.

Fuzzy Logic Control achieved the highest overall score,
showing superior adaptability and high efficiency under
nonlinear conditions. MPC ranked next, excelling in energy
efficiency and digital-integration capability but requiring
greater implementation effort.

— PO
Cascade

— Fuzzy logic

— Feedforward

— MPC

— onjoff

Control performance

Efficiency

Figure 3. Comparing control methods by evaluation
criteria.

PID and cascade controllers demonstrated strong
controllability and ease of deployment, whereas feedforward
control  contributed = moderate improvements in
responsiveness. The On/Off approach scored highest in
simplicity and cost but lowest in precision. Overall, the
diagram illustrates how different techniques balance
performance and practicality, highlighting the trade-offs that
guided their final ranking in the decision analysis

For temperature regulation in mashing and boiling, PID
control emerged as the most suitable option due to its
simplicity, proven effectiveness in linear systems, and ease of
integration with existing programmable logic controllers
(PLCs). In fermentation, where the process is nonlinear and
sensitive to biological variability, FLC outperformed other
strategies by providing robust control under uncertainty and
enabling operator knowledge to be encoded into the control
rules.

In stages such as wort transfer and packaging, which
involve rapid changes and require high responsiveness,
cascade control and feedforward control were found to be
effective. Cascade control enabled secondary variables (e.g.,
jacket temperature or pressure) to be tightly regulated, thereby
stabilizing the primary variable more efficiently. Feedforward
control added an anticipatory element, improving system
response to predictable disturbances, such as volumetric
surges during transfer.

=
g 8 b | e
sels8| £ | 7 |55 |8
Control [ o £ a c “ g ] o | =
L E |2 & = kol 82 |EE |o &€
Method | 6 5 |8 E - 9 0|52 |5 |&
Ot |wg | 3 E g |2 £ |38
K E. 4 & E = | F
PID High Very Low Medium | High Medium | 7.8 | 2
High
Cascade High Medium | Medium | Medium | Medium | Medium | 7.4 | 3
FLC High Medium | Very High Medium | High 85 (1
High
Feedforward | Medium | Medium | Medium | High Medium | Medium | 7.1
MPC Very Low High Very Low Very 79
High High High
On/Off Low Very Very Low Very Low 63 |5
High Low High

Table 3. Control strategy performance evaluation results
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For oxygen dosing and level control, where rapid feedback
is required with relatively straightforward actuation logic,
On/Off control was adequate and cost-effective. On the other
hand, in applications where multiple variables and constraints
must be managed simultaneously, such as energy optimization
during wort boiling and conditioning, MPC provided superior
performance. MPC allowed for the coordination of variables
across interconnected systems and forecasted control actions
based on future process trajectories.

Composite performance ranking

The composite scores generated through MCDA
confirmed that PID control remains a practical and effective
baseline solution for stages with predictable, linear behavior.
FLC and MPC received the highest scores for adaptability and
control precision in nonlinear and multivariable systems,
although their implementation required higher computational
resources and tuning efforts. Cascade control was recognized
for improving disturbance rejection in coupled thermal
systems, while feedforward control was valuable for
improving responsiveness without increasing feedback loop
gain (Table 4). These rankings align with observations from
industrial brewing operations for complex, batch-oriented
processes.

Process Recommended  control | Rationale

Stage Strategy

Mashing PID Simple linear dynamics, well-suited for
temperature regulation

Lautering Cascade Pressure and flow are coupled, secondary
loop adds precision

Boiling MPC Energy-intensive, requires predictive control

Fermentation | FLC Monlinear, biologically vanable system

Conditioning | PID / MPC Stable but needs energy optimization

Packaging On/Off { Feedforward Fast response; binary control sufficient

Table 4. Recommended control method by process stage.

Integrated architecture validation

Figure 4 illustrates an integrated control architecture for a
smart beer production system, combining process operations
with automation and digital monitoring technologies. The
proposed integrated control architecture was evaluated based
on its ability to coordinate multiple control loops and support
process-wide stability.

Simulation-based validation demonstrated that combining
PID and FLC in a layered structure for fermentation improved
control accuracy by 15% compared to single-loop PID-only
configurations (Figure 4). Similarly, energy consumption
during wort boiling was reduced by approximately 12% when
MPC was employed, owing to its ability to predict optimal
heating profiles while minimizing thermal overshoot.

The architecture also exhibited strong compatibility with
digitalization tools such as remote data acquisition, real-time
alarms, and historical data analysis. The modular design of the
system facilitates scalability and allows individual units to be
upgraded without disrupting the overall process. This
modularity supports progressive adoption of Industry 4.0
features, including cloud-based analytics and predictive
control.

Practical considerations and limitations

While advanced control strategies like MPC and FLC
showed clear benefits, their practical implementation poses
certain challenges. These include the need for skilled
personnel to manage algorithm configuration and tuning,
greater reliance on high-quality sensor data, and increased
demands on computational resources. For small-scale
breweries, the cost and complexity of implementing such
strategies may not be justified unless integrated into broader
digital transformation efforts.

Nonetheless, the combination of conventional and
advanced control methods within a unified architecture offers
a flexible solution that can be adapted based on scale, budget,
and technical expertise. The methodology is also applicable to
other food and beverage production systems with similar
dynamic and nonlinear characteristics.

SCADA/ loT
system

Preparation of malt

Solar panel

Energy storage

Process

Conditioning

Clarification and cooling

boiling

Pasteurization

Storage tanks

€o:
Packaging

Figure 4. Control architecture of the brewing process.
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Conclusions

This study presented a comprehensive methodology for the
selection and integration of control system principles tailored
to the beer production process. By systematically analyzing
each stage of production, from mashing and boiling to
fermentation and packaging, the study identified key control
objectives and evaluated candidate control strategies using a
MCDA framework based on the AHP. The evaluation
considered multiple technical and practical criteria, including
control performance, ease of implementation, adaptability to
nonlinear processes, energy efficiency, cost-effectiveness, and
compatibility with Industry 4.0 technologies.

The results revealed that no single control strategy is
universally optimal across all production stages. Rather, a
combination of classical and advanced methods is necessary
to meet the diverse control requirements. PID control remains
areliable choice for linear and well-understood processes such
as temperature regulation during mashing, while FLC and
MPC demonstrated superior performance in managing
complex, nonlinear, and biologically sensitive stages like
fermentation. Cascade and feedforward control methods were
effective in improving response times and reducing
disturbances in coupled thermal and transfer systems. On/Off
control provided a simple but adequate solution for binary
operations such as tank level management and valve actuation
in packaging lines. An integrated control architecture was
proposed, incorporating selected strategies into a process-wide
automation framework. This architecture was shown to be
compatible with industrial platforms and adaptable to smart
manufacturing environments, enabling real-time data
acquisition, predictive analytics, and enhanced operational
transparency.

Overall, the study highlights the importance of context-
specific control strategy selection in complex food and
beverage manufacturing environments. The proposed
methodology and findings offer practical guidance for
engineers and decision-makers seeking to modernize and
optimize brewery operations through intelligent automation.
Future work may include experimental validation in a pilot-
scale brewery and the application of Al-based adaptive control
methods to further improve system autonomy and robustness.
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