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Abstract 

Tuberculosis (TB) is one of the world’s deadliest infectious diseases, making 

rapid and accurate diagnosis essential for its control. However, challenges such 

as a lack of infrastructure and qualified professionals hinder detection, 

especially in low- and middle-income countries. In this scenario, Artificial 

Intelligence (AI) and Artificial Immune Systems (AIS) emerge as innovative 

tools to enhance TB diagnosis. AI has been applied to the analysis of chest X-

rays and molecular tests, increasing accuracy and reducing diagnosis time. Deep 

learning algorithms can identify subtle patterns in medical exams, achieving 

accuracy levels comparable to those of specialists. Meanwhile, AIS, inspired by 

the human immune system, stands out for their adaptability and continuous 

learning, making them highly effective in recognizing complex cases. Artificial 

intelligence has enormous potential to improve the diagnosis and treatment of 

tuberculosis, making medical care more efficient and accessible. This study 

presents solutions that can enhance diagnostic accuracy and efficiency, enabling 

faster and more targeted interventions. By combining these technologies with 

traditional methods, efforts to combat tuberculosis can be optimized, reducing 

its spread and global mortality. 
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Introduction 

Tuberculosis (TB) remains one of the world’s deadliest 

infectious diseases, with millions of new cases and hundreds 

of thousands of deaths annually (WHO, 2023). Early and 

accurate diagnosis is crucial for disease control, but many 

countries face challenges such as a lack of medical 

infrastructure, a shortage of qualified professionals, and 

difficulties in accessing advanced technologies. In this 

context, artificial intelligence (AI), and more specifically, 

Artificial Immune Systems (AIS), are emerging as promising 

tools to revolutionize tuberculosis diagnosis, offering rapid, 

accurate, and accessible solutions. 

Caused by the bacterium Mycobacterium tuberculosis, it 

primarily affects the lungs, although it can affect other organs 

such as the kidneys, meninges, and bones. Transmission 

occurs through the air when an infected person coughs, 

sneezes, or speaks, releasing droplets contaminated with the 

bacillus (Fuzinatto et al., 2024). The most common symptoms 

include a persistent cough lasting more than three weeks, 

fever, night sweats, weight loss, and fatigue. In severe cases, 

hemoptysis (coughing up blood) may occur. 

Traditional tuberculosis diagnosis is performed through 

clinical, radiological, and laboratory tests, such as sputum 

smear microscopy and the Xpert MTB/RIF rapid molecular 

test. Treatment is based on a combination of antibiotics, 

including rifampicin, isoniazid, pyrazinamide, and 

ethambutol, administered for a minimum period of six months 

(Fuzinatto et al., 2024). Adherence to treatment is crucial to 

prevent the development of resistant strains, such as 

multidrug-resistant tuberculosis (MDR-TB). 

Despite advances in diagnosis and treatment, tuberculosis 

remains a leading cause of mortality from infectious diseases 

worldwide. According to the World Health Organization 

(WHO, 2023), in 2021, approximately 10.6 million people fell 

ill with tuberculosis, and 1.6 million died from the disease. The 

COVID-19 pandemic has further exacerbated the scenario, 

with disruptions in health services and a reduction in the 

diagnosis and treatment of tuberculosis cases. 

AI, particularly through techniques such as deep learning, 

has been applied to analyze medical images, such as chest X-

rays, which is one of the most common methods for 

identifying suspected tuberculosis. AI algorithms can detect 

subtle patterns in images that may go unnoticed by the human 

eye, identifying pulmonary lesions characteristic of the disease 

with high accuracy. Recent studies show that AI-based 

systems can achieve accuracy rates comparable to or even 

higher than those of experienced radiologists, reducing the 
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time required for diagnosis and minimizing errors (Smith et 

al., 2023). For example, Smith et al. (2023) demonstrated that 

an AI algorithm developed to analyze chest X-rays achieved a 

sensitivity of 95% and a specificity of 88% in detecting 

tuberculosis, outperforming the accuracy of traditional 

methods of human analysis. 

In addition to X-rays, AI is also being used to analyze data 

from molecular tests, such as the Xpert MTB/RIF, which 

detects the presence of the tuberculosis bacillus and its 

resistance to rifampicin (WHO, 2023). Algorithms can process 

large volumes of laboratory data, identify patterns, and 

provide results more quickly and efficiently. This is especially 

useful in resource-limited regions, where manual processing 

capacity is limited. A 2023 report by the World Health 

Organization (WHO) highlighted that the integration of AI 

into molecular tests can reduce diagnosis time by up to 50%, 

facilitating early treatment initiation. 

Another promising application of AI is in screening at-risk 

populations. Intelligent systems can analyze demographic, 

clinical, and epidemiological data to identify individuals more 

likely to develop tuberculosis, directing prevention efforts and 

early diagnosis. This is particularly relevant in endemic areas, 

where early detection can interrupt the chain of transmission. 

The study published in 2022 by Jones et al. showed that an AI 

model developed to predict the risk of tuberculosis in 

vulnerable populations achieved an accuracy of 92%, 

demonstrating its potential to optimize the allocation of 

resources in public health. 

Inspired by the workings of the human immune system, 

Artificial Immune Systems (AIS) are computational 

algorithms that mimic biological processes, such as learning, 

memory, and pattern recognition, to solve complex problems 

(Soares et al., 2025; Almeida et al., 2024). In the context of 

tuberculosis, these systems have proven particularly effective, 

overcoming many of the limitations of traditional techniques. 

AIS are capable of analyzing large volumes of data, such 

as chest X-ray images, molecular test results, and clinical data, 

identifying patterns associated with tuberculosis with high 

accuracy. Unlike other AI techniques, such as conventional 

neural networks, AIS stand out for their dynamic adaptation 

and continuous learning capabilities. They can evolve over 

time, adapting to new data and improving their effectiveness, 

without the need for extensive reprogramming. This is 

especially useful in scenarios where data can vary 

significantly, such as in different populations or geographic 

regions. 

One of the main advantages of AIS is their ability to handle 

incomplete or noisy data, a common challenge in resource-

limited areas. For example, in regions where the quality of 

chest X-rays may be compromised by old equipment or a lack 

of maintenance, AIS can still provide reliable diagnoses. 

Something that other AI techniques may not be able to achieve 

with the same efficiency. In addition, AIS are particularly 

effective in detecting complex cases, such as extrapulmonary 

tuberculosis or latent infections, which are more difficult to 

identify with traditional methods. 

Another aspect that differentiates AIS is their ability to 

integrate with other technologies. They can be combined with 

molecular tests, such as the Xpert MTB/RIF, to increase 

diagnostic accuracy and reduce the time required to obtain 

results. A recent study published in 2023 by Lee et al. 

demonstrated that an artificial immune system integrated with 

molecular tests achieved 98% accuracy in detecting 

tuberculosis, outperforming conventional methods. This 

integration allows not only the identification of the presence 

of the disease but also the detection of drug-resistant strains, a 

critical factor for effective treatment. 

Furthermore, AIS are highly scalable and can be 

implemented on portable or cloud-based platforms, facilitating 

their use in remote areas or areas with limited infrastructure. 

This contrasts with other AI techniques that may require 

advanced hardware or stable internet connections. The 

portability and accessibility of AIS make them a viable 

solution for low- and middle-income countries, where 

tuberculosis is most prevalent. 

Despite the advances, the use of AI and AIS in tuberculosis 

diagnosis still faces challenges. The quality of the data used to 

train the algorithms is fundamental, and the lack of diverse and 

representative datasets can limit the effectiveness of these 

tools in different populations. In addition, it is necessary to 

ensure that AI-based solutions are accessible and integrated 

into existing health systems, especially in underdeveloped and 

developing countries, where the burden of tuberculosis is 

higher. A recent report by the Bill & Melinda Gates 

Foundation (2023) highlighted the need for investments in 

digital infrastructure and training of health professionals to 

ensure the effective adoption of AI in the fight against 

tuberculosis. 

In summary, Artificial Intelligence and Artificial Immune 

Systems have the potential to transform tuberculosis 

diagnosis, making it faster, more accurate, and more 

accessible. However, for this technology to reach its full 

potential, investments in research, infrastructure development, 

and collaboration between governments, health institutions, 

and technology companies are needed. The combination of AI 

with traditional tuberculosis control strategies can be a 

decisive step towards reducing the global impact of this 

disease. This study aims to present a solution, based on these 

technologies which can increase the accuracy and efficiency 

of diagnosis, allowing for faster and more targeted 

interventions. 

Materials and Methods 

This study adopts a quantitative approach, based on the 

statistical analysis of structured epidemiological data obtained 

from the SINAN/DATASUS database. A total of 109,345 

samples related to confirmed tuberculosis cases in Brazil were 

used, encompassing clinical, demographic, and laboratory 

variables. The proposed method, based on the Negative 

Selection Algorithm (NSA), was implemented in a 

computational environment and evaluated through repeated 

statistical simulations, focusing on objective metrics such as 

accuracy, processing time, and classification performance. As 

it does not involve the collection of subjective data or 

interpretative qualitative analysis, the study is fully aligned 

with the quantitative research paradigm. 

Biological Immune System: The biological immune 

system is a complex set of cells, tissues, and organs that work 

in harmony to defend the body against infections, diseases, and 

harmful substances, such as viruses, bacteria, and cancerous 

cells. The main function of the immune system is to identify 

and destroy these invaders while preserving the body's cells 
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(Murphy and Weaver, 2017). The functioning of this system 

can be divided into two lines of defence: innate immunity and 

adaptive immunity. 

Innate immunity is the first line of defence and responds 

quickly to any invading pathogen without the need for specific 

recognition. It is composed of physical barriers, such as the 

skin and mucous membranes, which prevent the entry of 

pathogens, and specialized cells, such as phagocytes 

(neutrophils and macrophages), which engulf and destroy 

microorganisms (Murphy and Weaver, 2017). In addition, 

innate immunity involves proteins such as the complement 

system. The complement system consists of a set of plasma 

proteins that can be activated by different pathways and acts 

by marking pathogens for destruction, promoting 

inflammation, and facilitating phagocytosis. However, the 

innate immunity response is general and non-specialized, that 

is, it does not have the ability to remember a previously 

encountered pathogen (Janeway et al., 2001). 

On the other hand, adaptive immunity is more specific and 

highly specialized. When innate immunity is not sufficient to 

eliminate a pathogen, adaptive immunity comes into play, 

promoting a more targeted response. It involves T and B cells, 

which are responsible for recognizing and eliminating 

pathogens more effectively. T cells help destroy infected cells, 

while B cells produce antibodies, which are proteins that bind 

to pathogens and neutralize their actions (Alberts et al., 2002). 

In addition, adaptive immunity has the capacity for 

immunological memory, that is, the immune system 

recognizes the pathogen it has previously encountered, 

allowing for a faster and more efficient response in the event 

of a reinfection (Murphy & Weaver, 2017). 

These two lines of defence act complementary. Initially, 

innate immunity blocks the invader, and subsequently, 

adaptive immunity provides a more specific and lasting 

response. The immune system also relies on organs such as the 

bone marrow, which produces blood cells, and the thymus, 

where T cells mature, in addition to lymph nodes and the 

spleen, which help coordinate immune responses (Medzhitov 

& Janeway, 2000). 

Although the immune system is highly efficient, it can 

exhibit failures. Autoimmune diseases, such as lupus and 

rheumatoid arthritis, occur when the immune system 

mistakenly attacks the body's own cells. In addition, some 

infections or cancers may escape immune detection due to 

mutations in pathogens or cancerous cells. However, in 

general, the immune system is essential for maintaining health 

and protecting against disease. 

Artificial Immune Systems: Artificial Immune Systems 

(AIS) are computational systems that seek to simulate the 

functioning of the biological immune system in a digital 

environment. They utilize artificial intelligence (AI) 

techniques to solve complex problems adaptively, that is, with 

the ability to learn and adjust to new situations, just as the 

human immune system reacts to pathogens and other threats 

(De Castro and Timmis, 2002). Inspired by the biological 

processes of pattern recognition, memory, and learning, AIS 

has been applied in various fields, including medicine, 

cybersecurity, and disease diagnosis. 

AIS operate in a similar approach to the biological immune 

system, where they seek to identify and neutralize threats or 

problems within a system. The fundamental principle of these 

systems is self-organization and continuous learning, which 

allows them to evolve over time, just as the immune system 

adapts throughout an organism's life. The architecture of AIS 

is generally composed of three main elements: detection, 

response, and memory. 

Detection: just as cells of the biological immune system 

identify pathogens and other harmful cells, AIS use machine 

learning algorithms to detect patterns or anomalies in input 

data, such as signs of intrusion or anomalous behaviors. 

Response: after detection, the AIS takes action to mitigate 

the problem, similar to the immune response process in the 

body. This may involve modifying a behavior or applying a 

solution. 

Memory: one of the most interesting features of AIS is 

their ability to store information about previous threats and use 

these memories to improve responses in future interactions. 

This is comparable to the immunological memory of the 

biological immune system, where the body recognizes past 

pathogens and responds more effectively in subsequent 

infections. 

The biological immune system is composed of a network 

of cells and molecules that communicate with each other to 

protect the body against pathogens and other foreign agents. 

This system is highly adaptive, utilizing specialized cells, such 

as T and B lymphocytes, to identify, attack, and remember 

invaders (Murphy & Weaver, 2017). In addition, the immune 

system is capable of mounting a rapid response to acute 

infections and maintaining immunological memory to protect 

the organism against reinfections (Alberts et al., 2002). 

AIS replicates this capacity for adaptation and response 

through machine learning algorithms and artificial neural 

networks. While the biological immune system deals with 

pathogenic agents such as viruses and bacteria, AIS can be 

used to solve problems in different areas. For example, 

detection of failures in computing systems, prevention of 

cyberattacks, and even in the diagnosis of diseases, such as 

tuberculosis, through the analysis of clinical data (Janeway et 

al., 2001). Just as the human immune system adapts and 

responds to new pathogens, AIS can also learn from data and 

improve their responses over time. 

Although the biological immune system is more complex 

and involves a vast network of cells and organs, AIS share the 

idea of continuous learning, pattern identification, and 

adaptation to new information. In addition, both systems have 

the ability to protect and defend the organism, whether against 

physical pathogens or digital threats. 

AIS has several practical applications. In the healthcare 

field, for example, they are used to analysing large volumes of 

medical data, such as X-ray images or laboratory test results, 

to identify diseases more efficiently and quickly (Jones et al., 

2022). They have also been applied in the development of 

intelligent screening systems, where algorithms identify 

populations at risk for diseases such as tuberculosis, providing 

early diagnoses and facilitating the allocation of resources in 

regions lacking infrastructure. 

Although Artificial Immune Systems do not possess the 

biological complexity of the human immune system, they 

share the central concept of adaptation, learning, and response 

to threats. By combining artificial intelligence techniques with 

the principle of responding to threats, AIS has the potential to 

revolutionize several areas, especially medicine and digital 
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security, offering innovative and adaptive solutions. The 

ability of these systems to evolve and improve over time 

makes them promising tools in the early diagnosis of diseases 

and in the protection of computing systems. 

Negative Selection Algorithm: The negative selection 

algorithm is a technique inspired by the functioning of the 

biological immune system and is commonly used in Artificial 

Immune Systems (AIS) and other areas of artificial 

intelligence to solve optimization and learning problems. The 

central idea of the algorithm is based on the process of 

immunological selection that occurs in the human immune 

system. In which cells of the immune system are trained to 

recognize and eliminate substances foreign to the organism 

(antigens), while preserving the body’s own cells (self-

antigens) (Bauer et al., 2005). 

In the biological immune system, the body must ensure that 

its immune cells, such as T lymphocytes, do not attack the 

body’s own cells (Janeway et al., 2001). To this end, the 

immune system undergoes a process called central tolerance, 

where cells that react against the organism itself 

(autoimmunity) are eliminated, while those that recognize 

pathogens or foreign substances are maintained and 

strengthened. Analogously, in the context of negative 

selection algorithms, the idea is to create a set of possible 

solutions to a problem and then eliminate the solutions that are 

not desired or that are autoimmune, that is, those that are not 

able to solve the problem efficiently (De Castro & Timmis, 

2002). The algorithm then selects the best solutions that can 

address the problem effectively, based on a process of 

eliminating solutions that do not meet the established criteria. 

Steps of the Negative Selection Algorithm: 

1. Generation of antigens and receptors: the algorithm 

begins by generating a set of possible solutions (called 

antigens) to the problem. Each solution represents a 

point in the solution space of the problem to be solved. 

In parallel, receptors are generated that represent a 

simplified representation of the possible solutions (De 

Castro & Timmis, 2002). 

2. Conformity evaluation: the algorithm checks the 

similarity between the proposed solutions (antigens) 

and the set of previously accepted solutions or those 

that have already been identified as valid (the body 

itself or the ideal solution). If a solution is too similar 

to a previously known one (self-antigen), it is 

considered “unfit” and is discarded (Bauer et al., 

2005). 

3. Selection of valid solutions: the solutions that have not 

been discarded, that is, those that have characteristics 

sufficiently different from the previous solutions, or 

that are foreign to the system, are selected to proceed 

in the optimization or learning process (De Castro & 

Timmis, 2002). These solutions can then be used as a 

basis for the next iteration of the algorithm, promoting 

improvements. 

4. Learning and refinement: the algorithm continues to 

adjust the selected solutions, continuously looking for 

new alternatives or improvements. This process is 

repeated until a convergence criterion is reached, that 

is, until the solution considered optimal or good 

enough is found (Bauer et al., 2005). 

This type of algorithm is used in a variety of contexts; in 

the field of supervised learning, the algorithm can be used to 

refine data sets, discarding those examples that are redundant 

or irrelevant to the classification task (Bauer et al., 2005).  

The negative selection algorithm has two distinct steps, the 

first being censoring, and the second monitoring. Censoring 

generates a set of detectors, where each detector is a string that 

does not correspond to any of the detected data. The 

monitoring phase monitors the protected data by comparing it 

with the detectors, where, in the event of a change a detector 

is activated (Forrest et al, 1994). Figure 1 shows the flowchart 

of the censoring and monitoring phase, respectively, on the left 

and right side (Forrest et al, 1994). 

 
Figure 1. Censoring and Monitoring Steps. 

The match concept, presented in the censorship and 

monitoring phase, can be perfect when the match between the 

two strings of equal sizes with identical symbols occurs. This 

case is considered extremely rare. The other case occurs when 

the match is considered partial, and occurs when r close 

matches, has corresponding symbols and positions, so any two 

chains (x,y) are matched and considered true when x and y, 

correspond at least to r nearby locations (Forrest et al, 1994). 

Therefore, the probability of any two Pm strings, can be 

calculated by Equation 1. 

Pm ≈ (
(

(l−r)(m−1)

m+1
) 

mr )   Equation 1 

Note that, l corresponds to the number of symbols in the 

string (length); m corresponds to the number of symbols of the 

alphabet; and r is the next matching number required to match 

(Forrest et al, 1994). The affinity rate of Taf  chains, given the 

proximity match, can be calculated, based on Equation 2.  

Taf =  (
An

At
) 100%   Equation 2 

where, An corresponds to the number of normal chains in the 

problem, the own strings; and corresponds At to the total 

number of chains of the problem, the own and non-own chains 

(Bradley, Tyrrell, 2002). The quantification of the affinity of 

the analyzed patterns (Qaf) should be made considering Qaf ≥
Taf, and can be calculated using Equation 3. 

Qaf =  
∑ Vc

L
i=1

L
100%   Equation 3 

which Vc corresponds to the corresponding variables; L 

corresponds to the total amount of variables; ∑ Vc
L
i=1  

corresponds to the sum of the corresponding variables (Soares 

et al, 2025).  
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Database: The database of DATASUS (Department of 

Informatics of the Unified Health System - SUS) with cases of 

tuberculosis since 2001, especially from the Information 

System for Notifiable Diseases (SINAN), is a platform that 

collects, organizes, and makes available information on the 

incidence and distribution of notifiable diseases, such as 

tuberculosis, in Brazil (Brasil, 2023). SINAN is a disease 

monitoring and management tool, and one of the main sources 

of data on cases of tuberculosis and other health problems in 

the country. 

SINAN's central objective is to centralize information on 

compulsory notifiable diseases, including tuberculosis, and 

enable monitoring of its evolution. This database contains 

records of confirmed, suspected, and discarded cases, as well 

as data on treatments, clinical evolution, demographic, and 

epidemiological characteristics of patients, among other 

parameters. By being fed by health professionals, it allows for 

the elaboration of accurate statistics on the rates of incidence, 

mortality, and resistance of the tuberculosis bacillus (Brasil, 

2023). 

The database with 109,345 samples of tuberculosis cases 

since 2001 contains detailed information of each patient who 

had the diagnosis of tuberculosis confirmed in several regions 

of Brazil. Each sample contains a series of parameters that 

allow the evaluation of the patterns of occurrence and 

treatment of the disease. Among these parameters, we can 

highlight: 

1. Demographic data: age, sex, race/ethnicity, and 

municipality of residence of the patient. 

2. Clinical characteristics: symptoms presented, such as 

persistent cough, fever, and night sweats, among others. 

3. Treatment history: information on adherence to 

treatment, type of therapeutic regimen used (directly 

observed treatment, for example), treatment time, drug 

resistance, and evolution of the clinical picture. 

4. Epidemiology and comorbidities: data on the presence of 

other associated conditions, such as HIV, and history of 

contact with patients diagnosed with tuberculosis. 

5. Types of tuberculosis: classification of the type of 

tuberculosis (pulmonary, extra pulmonary), bacilliferous 

or non-bacilliferous form, among others. 

These data are of utmost importance to understand the 

behavior of the disease over time, identify more vulnerable 

populations, and improve prevention and treatment policies 

(Brasil, 2023). With 109,345 samples, the database offers a 

substantial amount of information, which makes it possible to 

carry out robust epidemiological analyses. The samples are not 

just raw numbers; each of them includes a set of variables that 

make up the patterns to be evaluated, such as: 

Diagnostic Patterns: identification of areas with the 

highest number of diagnosed cases. 

Epidemiological Patterns: study of incidence and 

mortality rates, relating them to factors such as age, sex, and 

socioeconomic conditions. 

Treatment Patterns: monitoring the effectiveness of 

treatments performed, the occurrence of drug resistance, and 

the impact of different therapies. 

These parameters offer a detailed view of the tuberculosis 

epidemic in Brazil and help to identify trends and areas with 

the greatest need for intervention (Brasil, 2023). 

The SINAN database provides a large amount of data that 

can be used to optimize the diagnosis, treatment, and control 

of tuberculosis, in addition to providing important insights into 

the epidemiology of the disease. The analysis of these data is 

fundamental to improving public health strategies and 

strengthening the fight against tuberculosis in the country. 

Through the SINAN database, we extracted the data necessary 

for this work according to Table 1. 

Table 1. Pre-processing steps performed to build the final 

data set. 

 

Results and discussion 

In this section, we present the tests performed on the 

samples collected from the database originating from the 

SINAN database. All experiments were conducted on a 

computer equipped with a 13th generation Intel(R) Core(TM) 

i7-1355U processor, with a frequency of 1.70 GHz, 16 GB of 

RAM, and a 64-bit Windows 11 operating system. The 

implementation of the proposed method was carried out in the 

MATLAB® software. 

Test Suite 

The test suite used to evaluate the method proposed in this 

article is composed of the database samples generated from 

those collected in the laboratory, as described in Section 2.4. 

This set includes a total of 109,345 samples, as detailed in 

Table 2. Thus, a set of detectors was generated using 30% of 

the signals (baseline), and the parameters used for the tests are 

presented in Table 3. 

Table 2. Set of tests 

 

Table 3. Parameters. 

 

Letting TAf be the affinity rate and ε the deviation. To 

evaluate the proposed methodology, simulations were 

performed considering the configuration of the Negative 

Selection Algorithm (NSA). The input variables employed in 
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this study are listed and described in Table 1, with each row 

corresponding to an individual data sample. A total of 18,000 

samples were utilized, of which 30% (5,400 samples) were 

allocated to the censoring phase and the remaining 70% 

(12,600 samples) to the monitoring phase, in accordance with 

the proposed methodology. To enhance the robustness and 

statistical reliability of the results, the simulations were 

performed over 30 independent iterations. The classification 

performance is detailed in the confusion matrix presented in 

Figure 2. 

 

Figure 2. Confusion Matrix. 

The data collected throughout these executions allows for 

a detailed analysis of the system’s behavior. The results from 

these simulations are presented in an organized manner in 

Table 4, enabling a better understanding of the impacts of the 

adopted configuration. 

Table 4. Results obtained in ASN. 

 

In order to ensure the veracity of the results, the results in 

Table 4 show the average values obtained by a cross-reference 

test, performed 30 times during the execution of the NSA for 

the detector set. We note that the NSA performs well, with an 

accuracy rate equal to 100% for the best configuration. The 

number of detectors used in the censorship phase directly 

influences the fault diagnosis process. Thus, we suggest using 

30% of the information in the database to generate the detector 

set, aiming to give robustness to the system. That is, the more 

knowledge available in the learning phase, the more efficient 

the NSA diagnosis process will be. 

Finally, we highlight that the NSA is executed in less than 

0.38 milliseconds, which allows the application of this system 

in real-time, as decisions must be made in a short time frame 

in situations of widespread contamination. 

Conclusions 

The Negative Selection Algorithm (NSA), inspired by the 

biological immune system, is a powerful tool for solving 

complex problems. In this work, we proposed a novel NSA-

based approach for the detection and diagnosis of tuberculosis. 

The method achieved a 100% success rate in its best 

configuration, demonstrating exceptional accuracy and 

reliability. 

Although the sensing phase requires more computational 

time, it is executed offline and does not impact real-time 

performance. The monitoring phase, responsible for 

processing acquired signals, operates in under 0.37 

milliseconds, enabling real-time disease detection. 

These results have significant implications for clinical 

practice: the high accuracy reduces the risk of misdiagnosis, 

while the system’s speed supports rapid decision-making in 

healthcare settings. The proposed method offers a robust and 

efficient alternative to traditional diagnostic procedures, 

reducing dependence on time-consuming laboratory tests and 

enabling earlier interventions. Therefore, this work represents 

a meaningful advance in clinical diagnostics by introducing a 

promising intelligent system that can be integrated into real-

world medical applications and extended to the diagnosis of 

other diseases in future research. 

Moreover, the proposed computational architecture 

demonstrates high technological transferability. Its modular 

and lightweight design allows easy adaptation to different 

hardware platforms, including embedded systems and portable 

diagnostic devices. This feature supports the implementation 

of the method in resource-limited healthcare environments, 

such as rural clinics or mobile units, expanding the 

technology’s reach and promoting greater equity in access to 

quality diagnostics. 

However, some limitations must be considered. The 

system was evaluated using a controlled dataset, which may 

not fully reflect the variability found in real-world clinical 

environments. Additionally, adapting the method to different 

diseases may require specific tuning of the NSA parameters. 

As future directions, we propose large-scale clinical 

validation, integration with portable monitoring devices, and 

the combined use of other artificial intelligence techniques to 

enhance the system’s sensitivity and generalizability across 

diverse medical contexts. 
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