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Introduction

Abstract

Tuberculosis (TB) is one of the world’s deadliest infectious diseases, making
rapid and accurate diagnosis essential for its control. However, challenges such
as a lack of infrastructure and qualified professionals hinder detection,
especially in low- and middle-income countries. In this scenario, Artificial
Intelligence (AI) and Artificial Immune Systems (AIS) emerge as innovative
tools to enhance TB diagnosis. Al has been applied to the analysis of chest X-
rays and molecular tests, increasing accuracy and reducing diagnosis time. Deep
learning algorithms can identify subtle patterns in medical exams, achieving
accuracy levels comparable to those of specialists. Meanwhile, AIS, inspired by
the human immune system, stands out for their adaptability and continuous
learning, making them highly effective in recognizing complex cases. Artificial
intelligence has enormous potential to improve the diagnosis and treatment of
tuberculosis, making medical care more efficient and accessible. This study
presents solutions that can enhance diagnostic accuracy and efficiency, enabling
faster and more targeted interventions. By combining these technologies with
traditional methods, efforts to combat tuberculosis can be optimized, reducing
its spread and global mortality.
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Tuberculosis (TB) remains one of the world’s deadliest
infectious diseases, with millions of new cases and hundreds
of thousands of deaths annually (WHO, 2023). Early and
accurate diagnosis is crucial for disease control, but many
countries face challenges such as a lack of medical
infrastructure, a shortage of qualified professionals, and
difficulties in accessing advanced technologies. In this
context, artificial intelligence (AI), and more specifically,
Artificial Immune Systems (AIS), are emerging as promising
tools to revolutionize tuberculosis diagnosis, offering rapid,
accurate, and accessible solutions.

Caused by the bacterium Mycobacterium tuberculosis, it
primarily affects the lungs, although it can affect other organs
such as the kidneys, meninges, and bones. Transmission
occurs through the air when an infected person coughs,
sneezes, or speaks, releasing droplets contaminated with the
bacillus (Fuzinatto et al., 2024). The most common symptoms
include a persistent cough lasting more than three weeks,
fever, night sweats, weight loss, and fatigue. In severe cases,
hemoptysis (coughing up blood) may occur.

Traditional tuberculosis diagnosis is performed through
clinical, radiological, and laboratory tests, such as sputum

test. Treatment is based on a combination of antibiotics,
including rifampicin, isoniazid, pyrazinamide, and
ethambutol, administered for a minimum period of six months
(Fuzinatto et al., 2024). Adherence to treatment is crucial to
prevent the development of resistant strains, such as
multidrug-resistant tuberculosis (MDR-TB).

Despite advances in diagnosis and treatment, tuberculosis
remains a leading cause of mortality from infectious diseases
worldwide. According to the World Health Organization
(WHO, 2023), in 2021, approximately 10.6 million people fell
ill with tuberculosis, and 1.6 million died from the disease. The
COVID-19 pandemic has further exacerbated the scenario,
with disruptions in health services and a reduction in the
diagnosis and treatment of tuberculosis cases.

Al, particularly through techniques such as deep learning,
has been applied to analyze medical images, such as chest X-
rays, which is one of the most common methods for
identifying suspected tuberculosis. Al algorithms can detect
subtle patterns in images that may go unnoticed by the human
eye, identifying pulmonary lesions characteristic of the disease
with high accuracy. Recent studies show that Al-based
systems can achieve accuracy rates comparable to or even
higher than those of experienced radiologists, reducing the
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time required for diagnosis and minimizing errors (Smith et
al., 2023). For example, Smith et al. (2023) demonstrated that
an Al algorithm developed to analyze chest X-rays achieved a
sensitivity of 95% and a specificity of 88% in detecting
tuberculosis, outperforming the accuracy of traditional
methods of human analysis.

In addition to X-rays, Al is also being used to analyze data
from molecular tests, such as the Xpert MTB/RIF, which
detects the presence of the tuberculosis bacillus and its
resistance to rifampicin (WHO, 2023). Algorithms can process
large volumes of laboratory data, identify patterns, and
provide results more quickly and efficiently. This is especially
useful in resource-limited regions, where manual processing
capacity is limited. A 2023 report by the World Health
Organization (WHO) highlighted that the integration of Al
into molecular tests can reduce diagnosis time by up to 50%,
facilitating early treatment initiation.

Another promising application of Al is in screening at-risk
populations. Intelligent systems can analyze demographic,
clinical, and epidemiological data to identify individuals more
likely to develop tuberculosis, directing prevention efforts and
early diagnosis. This is particularly relevant in endemic areas,
where early detection can interrupt the chain of transmission.
The study published in 2022 by Jones et al. showed that an Al
model developed to predict the risk of tuberculosis in
vulnerable populations achieved an accuracy of 92%,
demonstrating its potential to optimize the allocation of
resources in public health.

Inspired by the workings of the human immune system,
Artificial Immune Systems (AIS) are computational
algorithms that mimic biological processes, such as learning,
memory, and pattern recognition, to solve complex problems
(Soares et al., 2025; Almeida et al., 2024). In the context of
tuberculosis, these systems have proven particularly effective,
overcoming many of the limitations of traditional techniques.

AIS are capable of analyzing large volumes of data, such
as chest X-ray images, molecular test results, and clinical data,
identifying patterns associated with tuberculosis with high
accuracy. Unlike other Al techniques, such as conventional
neural networks, AIS stand out for their dynamic adaptation
and continuous learning capabilities. They can evolve over
time, adapting to new data and improving their effectiveness,
without the need for extensive reprogramming. This is
especially useful in scenarios where data can vary
significantly, such as in different populations or geographic
regions.

One of the main advantages of AIS is their ability to handle
incomplete or noisy data, a common challenge in resource-
limited areas. For example, in regions where the quality of
chest X-rays may be compromised by old equipment or a lack
of maintenance, AIS can still provide reliable diagnoses.
Something that other Al techniques may not be able to achieve
with the same efficiency. In addition, AIS are particularly
effective in detecting complex cases, such as extrapulmonary
tuberculosis or latent infections, which are more difficult to
identify with traditional methods.

Another aspect that differentiates AIS is their ability to
integrate with other technologies. They can be combined with
molecular tests, such as the Xpert MTB/RIF, to increase
diagnostic accuracy and reduce the time required to obtain
results. A recent study published in 2023 by Lee et al.

demonstrated that an artificial immune system integrated with
molecular tests achieved 98% accuracy in detecting
tuberculosis, outperforming conventional methods. This
integration allows not only the identification of the presence
of the disease but also the detection of drug-resistant strains, a
critical factor for effective treatment.

Furthermore, AIS are highly scalable and can be
implemented on portable or cloud-based platforms, facilitating
their use in remote areas or areas with limited infrastructure.
This contrasts with other Al techniques that may require
advanced hardware or stable internet connections. The
portability and accessibility of AIS make them a viable
solution for low- and middle-income countries, where
tuberculosis is most prevalent.

Despite the advances, the use of Al and AIS in tuberculosis
diagnosis still faces challenges. The quality of the data used to
train the algorithms is fundamental, and the lack of diverse and
representative datasets can limit the effectiveness of these
tools in different populations. In addition, it is necessary to
ensure that Al-based solutions are accessible and integrated
into existing health systems, especially in underdeveloped and
developing countries, where the burden of tuberculosis is
higher. A recent report by the Bill & Melinda Gates
Foundation (2023) highlighted the need for investments in
digital infrastructure and training of health professionals to
ensure the effective adoption of Al in the fight against
tuberculosis.

In summary, Artificial Intelligence and Artificial Immune
Systems have the potential to transform tuberculosis
diagnosis, making it faster, more accurate, and more
accessible. However, for this technology to reach its full
potential, investments in research, infrastructure development,
and collaboration between governments, health institutions,
and technology companies are needed. The combination of Al
with traditional tuberculosis control strategies can be a
decisive step towards reducing the global impact of this
disease. This study aims to present a solution, based on these
technologies which can increase the accuracy and efficiency
of diagnosis, allowing for faster and more targeted
interventions.

Materials and Methods

This study adopts a quantitative approach, based on the
statistical analysis of structured epidemiological data obtained
from the SINAN/DATASUS database. A total of 109,345
samples related to confirmed tuberculosis cases in Brazil were
used, encompassing clinical, demographic, and laboratory
variables. The proposed method, based on the Negative
Selection Algorithm (NSA), was implemented in a
computational environment and evaluated through repeated
statistical simulations, focusing on objective metrics such as
accuracy, processing time, and classification performance. As
it does not involve the collection of subjective data or
interpretative qualitative analysis, the study is fully aligned
with the quantitative research paradigm.

Biological Immune System: The biological immune
system is a complex set of cells, tissues, and organs that work
in harmony to defend the body against infections, diseases, and
harmful substances, such as viruses, bacteria, and cancerous
cells. The main function of the immune system is to identify
and destroy these invaders while preserving the body's cells
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(Murphy and Weaver, 2017). The functioning of this system
can be divided into two lines of defence: innate immunity and
adaptive immunity.

Innate immunity is the first line of defence and responds
quickly to any invading pathogen without the need for specific
recognition. It is composed of physical barriers, such as the
skin and mucous membranes, which prevent the entry of
pathogens, and specialized cells, such as phagocytes
(neutrophils and macrophages), which engulf and destroy
microorganisms (Murphy and Weaver, 2017). In addition,
innate immunity involves proteins such as the complement
system. The complement system consists of a set of plasma
proteins that can be activated by different pathways and acts
by marking pathogens for destruction, promoting
inflammation, and facilitating phagocytosis. However, the
innate immunity response is general and non-specialized, that
is, it does not have the ability to remember a previously
encountered pathogen (Janeway et al., 2001).

On the other hand, adaptive immunity is more specific and
highly specialized. When innate immunity is not sufficient to
eliminate a pathogen, adaptive immunity comes into play,
promoting a more targeted response. It involves T and B cells,
which are responsible for recognizing and eliminating
pathogens more effectively. T cells help destroy infected cells,
while B cells produce antibodies, which are proteins that bind
to pathogens and neutralize their actions (Alberts et al., 2002).
In addition, adaptive immunity has the capacity for
immunological memory, that is, the immune system
recognizes the pathogen it has previously encountered,
allowing for a faster and more efficient response in the event
of a reinfection (Murphy & Weaver, 2017).

These two lines of defence act complementary. Initially,
innate immunity blocks the invader, and subsequently,
adaptive immunity provides a more specific and lasting
response. The immune system also relies on organs such as the
bone marrow, which produces blood cells, and the thymus,
where T cells mature, in addition to lymph nodes and the
spleen, which help coordinate immune responses (Medzhitov
& Janeway, 2000).

Although the immune system is highly efficient, it can
exhibit failures. Autoimmune diseases, such as lupus and
rheumatoid arthritis, occur when the immune system
mistakenly attacks the body's own cells. In addition, some
infections or cancers may escape immune detection due to
mutations in pathogens or cancerous cells. However, in
general, the immune system is essential for maintaining health
and protecting against disease.

Artificial Immune Systems: Artificial Immune Systems
(AIS) are computational systems that seek to simulate the
functioning of the biological immune system in a digital
environment. They utilize artificial intelligence (Al)
techniques to solve complex problems adaptively, that is, with
the ability to learn and adjust to new situations, just as the
human immune system reacts to pathogens and other threats
(De Castro and Timmis, 2002). Inspired by the biological
processes of pattern recognition, memory, and learning, AIS
has been applied in various fields, including medicine,
cybersecurity, and disease diagnosis.

AIS operate in a similar approach to the biological immune
system, where they seek to identify and neutralize threats or
problems within a system. The fundamental principle of these

systems is self-organization and continuous learning, which
allows them to evolve over time, just as the immune system
adapts throughout an organism's life. The architecture of AIS
is generally composed of three main elements: detection,
response, and memory.

Detection: just as cells of the biological immune system
identify pathogens and other harmful cells, AIS use machine
learning algorithms to detect patterns or anomalies in input
data, such as signs of intrusion or anomalous behaviors.

Response: after detection, the AIS takes action to mitigate
the problem, similar to the immune response process in the
body. This may involve modifying a behavior or applying a
solution.

Memory: one of the most interesting features of AIS is
their ability to store information about previous threats and use
these memories to improve responses in future interactions.
This is comparable to the immunological memory of the
biological immune system, where the body recognizes past
pathogens and responds more effectively in subsequent
infections.

The biological immune system is composed of a network
of cells and molecules that communicate with each other to
protect the body against pathogens and other foreign agents.
This system is highly adaptive, utilizing specialized cells, such
as T and B lymphocytes, to identify, attack, and remember
invaders (Murphy & Weaver, 2017). In addition, the immune
system is capable of mounting a rapid response to acute
infections and maintaining immunological memory to protect
the organism against reinfections (Alberts et al., 2002).

AIS replicates this capacity for adaptation and response
through machine learning algorithms and artificial neural
networks. While the biological immune system deals with
pathogenic agents such as viruses and bacteria, AIS can be
used to solve problems in different areas. For example,
detection of failures in computing systems, prevention of
cyberattacks, and even in the diagnosis of diseases, such as
tuberculosis, through the analysis of clinical data (Janeway et
al., 2001). Just as the human immune system adapts and
responds to new pathogens, AIS can also learn from data and
improve their responses over time.

Although the biological immune system is more complex
and involves a vast network of cells and organs, AIS share the
idea of continuous learning, pattern identification, and
adaptation to new information. In addition, both systems have
the ability to protect and defend the organism, whether against
physical pathogens or digital threats.

AIS has several practical applications. In the healthcare
field, for example, they are used to analysing large volumes of
medical data, such as X-ray images or laboratory test results,
to identify diseases more efficiently and quickly (Jones et al.,
2022). They have also been applied in the development of
intelligent screening systems, where algorithms identify
populations at risk for diseases such as tuberculosis, providing
early diagnoses and facilitating the allocation of resources in
regions lacking infrastructure.

Although Artificial Immune Systems do not possess the
biological complexity of the human immune system, they
share the central concept of adaptation, learning, and response
to threats. By combining artificial intelligence techniques with
the principle of responding to threats, AIS has the potential to
revolutionize several areas, especially medicine and digital
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security, offering innovative and adaptive solutions. The
ability of these systems to evolve and improve over time
makes them promising tools in the early diagnosis of diseases
and in the protection of computing systems.

Negative Selection Algorithm: The negative selection
algorithm is a technique inspired by the functioning of the
biological immune system and is commonly used in Artificial
Immune Systems (AIS) and other areas of artificial
intelligence to solve optimization and learning problems. The
central idea of the algorithm is based on the process of
immunological selection that occurs in the human immune
system. In which cells of the immune system are trained to
recognize and eliminate substances foreign to the organism
(antigens), while preserving the body’s own cells (self-
antigens) (Bauer et al., 2005).

In the biological immune system, the body must ensure that
its immune cells, such as T lymphocytes, do not attack the
body’s own cells (Janeway et al., 2001). To this end, the
immune system undergoes a process called central tolerance,
where cells that react against the organism itself
(autoimmunity) are eliminated, while those that recognize
pathogens or foreign substances are maintained and
strengthened. Analogously, in the context of negative
selection algorithms, the idea is to create a set of possible
solutions to a problem and then eliminate the solutions that are
not desired or that are autoimmune, that is, those that are not
able to solve the problem efficiently (De Castro & Timmis,
2002). The algorithm then selects the best solutions that can
address the problem effectively, based on a process of
eliminating solutions that do not meet the established criteria.

Steps of the Negative Selection Algorithm:

1. Generation of antigens and receptors: the algorithm
begins by generating a set of possible solutions (called
antigens) to the problem. Each solution represents a
point in the solution space of the problem to be solved.
In parallel, receptors are generated that represent a
simplified representation of the possible solutions (De
Castro & Timmis, 2002).

2. Conformity evaluation: the algorithm checks the
similarity between the proposed solutions (antigens)
and the set of previously accepted solutions or those
that have already been identified as valid (the body
itself or the ideal solution). If a solution is too similar
to a previously known one (self-antigen), it is
considered “unfit” and is discarded (Bauer et al.,
2005).

3. Selection of valid solutions: the solutions that have not
been discarded, that is, those that have characteristics
sufficiently different from the previous solutions, or
that are foreign to the system, are selected to proceed
in the optimization or learning process (De Castro &
Timmis, 2002). These solutions can then be used as a
basis for the next iteration of the algorithm, promoting
improvements.

4. Learning and refinement: the algorithm continues to
adjust the selected solutions, continuously looking for
new alternatives or improvements. This process is
repeated until a convergence criterion is reached, that
is, until the solution considered optimal or good
enough is found (Bauer et al., 2005).

This type of algorithm is used in a variety of contexts; in
the field of supervised learning, the algorithm can be used to
refine data sets, discarding those examples that are redundant
or irrelevant to the classification task (Bauer et al., 2005).

The negative selection algorithm has two distinct steps, the
first being censoring, and the second monitoring. Censoring
generates a set of detectors, where each detector is a string that
does not correspond to any of the detected data. The
monitoring phase monitors the protected data by comparing it
with the detectors, where, in the event of a change a detector
is activated (Forrest et al, 1994). Figure 1 shows the flowchart
of the censoring and monitoring phase, respectively, on the left
and right side (Forrest et al, 1994).

Detector
Collection

(R)

Self Strings
5)

Generate &
Random No Detector Protected
- Match 5 Match
Strings = Set (R) Strings (S) 2an
(Ro)
Yes Yes

Nonself

Reject
! Detected

Censoring Step Monitoring Step

Figure 1. Censoring and Monitoring Steps.

The match concept, presented in the censorship and
monitoring phase, can be perfect when the match between the
two strings of equal sizes with identical symbols occurs. This
case is considered extremely rare. The other case occurs when
the match is considered partial, and occurs when r close
matches, has corresponding symbols and positions, so any two
chains (x,y) are matched and considered true when x and y,
correspond at least to » nearby locations (Forrest et al, 1994).
Therefore, the probability of any two P, strings, can be
calculated by Equation 1.

P~ ((—“‘iﬂ‘”))

T Equation 1
Note that, 1 corresponds to the number of symbols in the
string (length); m corresponds to the number of symbols of the
alphabet; and r is the next matching number required to match
(Forrest et al, 1994). The affinity rate of 7,y chains, given the
proximity match, can be calculated, based on Equation 2.

T = (i—‘:) 100% Equation 2
where, A, corresponds to the number of normal chains in the
problem, the own strings; and corresponds A; to the total
number of chains of the problem, the own and non-own chains
(Bradley, Tyrrell, 2002). The quantification of the affinity of
the analyzed patterns (Q,¢) should be made considering Qs =
T,¢, and can be calculated using Equation 3.

TitiVe .
Qar = T 100% Equation 3

which V. corresponds to the corresponding variables; L
corresponds to the total amount of variables; Y, V.
corresponds to the sum of the corresponding variables (Soares
et al, 2025).

o |
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Database: The database of DATASUS (Department of
Informatics of the Unified Health System - SUS) with cases of
tuberculosis since 2001, especially from the Information
System for Notifiable Diseases (SINAN), is a platform that
collects, organizes, and makes available information on the
incidence and distribution of notifiable diseases, such as
tuberculosis, in Brazil (Brasil, 2023). SINAN is a disease
monitoring and management tool, and one of the main sources
of data on cases of tuberculosis and other health problems in
the country.

SINAN's central objective is to centralize information on
compulsory notifiable diseases, including tuberculosis, and
enable monitoring of its evolution. This database contains
records of confirmed, suspected, and discarded cases, as well
as data on treatments, clinical evolution, demographic, and
epidemiological characteristics of patients, among other
parameters. By being fed by health professionals, it allows for
the elaboration of accurate statistics on the rates of incidence,
mortality, and resistance of the tuberculosis bacillus (Brasil,
2023).

The database with 109,345 samples of tuberculosis cases
since 2001 contains detailed information of each patient who
had the diagnosis of tuberculosis confirmed in several regions
of Brazil. Each sample contains a series of parameters that
allow the evaluation of the patterns of occurrence and
treatment of the disease. Among these parameters, we can
highlight:

1. Demographic data: age, sex, race/ethnicity, and
municipality of residence of the patient.

2. Clinical characteristics: symptoms presented, such as
persistent cough, fever, and night sweats, among others.

3. Treatment history: information on adherence to
treatment, type of therapeutic regimen used (directly
observed treatment, for example), treatment time, drug
resistance, and evolution of the clinical picture.

4. Epidemiology and comorbidities: data on the presence of
other associated conditions, such as HIV, and history of
contact with patients diagnosed with tuberculosis.

5. Types of tuberculosis: classification of the type of
tuberculosis (pulmonary, extra pulmonary), bacilliferous
or non-bacilliferous form, among others.

These data are of utmost importance to understand the
behavior of the disease over time, identify more vulnerable
populations, and improve prevention and treatment policies
(Brasil, 2023). With 109,345 samples, the database offers a
substantial amount of information, which makes it possible to
carry out robust epidemiological analyses. The samples are not
just raw numbers; each of them includes a set of variables that
make up the patterns to be evaluated, such as:

Diagnostic Patterns: identification of areas with the
highest number of diagnosed cases.

Epidemiological Patterns: study of incidence and
mortality rates, relating them to factors such as age, sex, and
socioeconomic conditions.

Treatment Patterns: monitoring the effectiveness of
treatments performed, the occurrence of drug resistance, and
the impact of different therapies.

These parameters offer a detailed view of the tuberculosis
epidemic in Brazil and help to identify trends and areas with
the greatest need for intervention (Brasil, 2023).

The SINAN database provides a large amount of data that
can be used to optimize the diagnosis, treatment, and control
of tuberculosis, in addition to providing important insights into
the epidemiology of the disease. The analysis of these data is
fundamental to improving public health strategies and
strengthening the fight against tuberculosis in the country.
Through the SINAN database, we extracted the data necessary
for this work according to Table 1.

Table 1. Pre-processing steps performed to build the final

data set.
Attribute Description

RAIOX_TORA Result of chest X-ray at the time of notification (code 3 refers to
other changes not compatible with tuberculosis)

AGRAVAIDS AIDS associated with tuberculosis at the time of the notification

AGRAVALCOO Alcohol consumption associated with tuberculosis at the time of the
notification

AGRAVDIABE Diabetes associated with tuberculosis at the time of the notification

AGRAVDOENC | Mental disease associated with tuberculosis at the time of the
notification

AGRAVOUTRA | Other diseases associated with tuberculosis at the time of the
notification

HIV Result of serology for the acquired immunodeficiency virus,
performed before or after the notification of TB. It aims to
assess HIV co-infection

HISTOPATOL Result of histopathological examination for diagnosis of TB

AGRAVDROGA | Other drug consumption associated with tuberculosis at the time of
the notification

AGRAVTABAC Tobacco consumption associated with tuberculosis at the time of the
notification

Results and discussion

In this section, we present the tests performed on the
samples collected from the database originating from the
SINAN database. All experiments were conducted on a
computer equipped with a 13th generation Intel(R) Core(TM)
17-1355U processor, with a frequency of 1.70 GHz, 16 GB of
RAM, and a 64-bit Windows 11 operating system. The
implementation of the proposed method was carried out in the
MATLAB® software.

Test Suite

The test suite used to evaluate the method proposed in this
article is composed of the database samples generated from
those collected in the laboratory, as described in Section 2.4.
This set includes a total of 109,345 samples, as detailed in
Table 2. Thus, a set of detectors was generated using 30% of
the signals (baseline), and the parameters used for the tests are
presented in Table 3.

Table 2. Set of tests

Features Database Sample
Normal 8.218
Contaminated 101.127
Total 109.345
Number of points in each sample 10

Table 3. Parameters.

Parameters | Value
TAf 70%
€ 3%

Letting TAf be the affinity rate and ¢ the deviation. To
evaluate the proposed methodology, simulations were
performed considering the configuration of the Negative
Selection Algorithm (NSA). The input variables employed in
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this study are listed and described in Table 1, with each row
corresponding to an individual data sample. A total of 18,000
samples were utilized, of which 30% (5,400 samples) were
allocated to the censoring phase and the remaining 70%
(12,600 samples) to the monitoring phase, in accordance with
the proposed methodology. To enhance the robustness and
statistical reliability of the results, the simulations were
performed over 30 independent iterations. The classification
performance is detailed in the confusion matrix presented in
Figure 2.

Confusion Matrix

Contaminated

Actual Class

Healthy

Contaminated
Predicted Class

Healthy

Figure 2. Confusion Matrix.

The data collected throughout these executions allows for
a detailed analysis of the system’s behavior. The results from
these simulations are presented in an organized manner in
Table 4, enabling a better understanding of the impacts of the
adopted configuration.

Table 4. Results obtained in ASN.

Ratings Ratings

Samples Correct Accuracy Processing time
proper Non- .
Tests ratings (%) (ms)
proper
12600 7000 5600 12600 100 0.376288

In order to ensure the veracity of the results, the results in
Table 4 show the average values obtained by a cross-reference
test, performed 30 times during the execution of the NSA for
the detector set. We note that the NSA performs well, with an
accuracy rate equal to 100% for the best configuration. The
number of detectors used in the censorship phase directly
influences the fault diagnosis process. Thus, we suggest using
30% of the information in the database to generate the detector
set, aiming to give robustness to the system. That is, the more
knowledge available in the learning phase, the more efficient
the NSA diagnosis process will be.

Finally, we highlight that the NSA is executed in less than
0.38 milliseconds, which allows the application of this system
in real-time, as decisions must be made in a short time frame
in situations of widespread contamination.

Conclusions

The Negative Selection Algorithm (NSA), inspired by the
biological immune system, is a powerful tool for solving
complex problems. In this work, we proposed a novel NSA-
based approach for the detection and diagnosis of tuberculosis.
The method achieved a 100% success rate in its best
configuration, demonstrating exceptional accuracy and
reliability.

Although the sensing phase requires more computational
time, it is executed offline and does not impact real-time
performance. The monitoring phase, responsible for
processing acquired signals, operates in under 0.37
milliseconds, enabling real-time disease detection.

These results have significant implications for clinical
practice: the high accuracy reduces the risk of misdiagnosis,
while the system’s speed supports rapid decision-making in
healthcare settings. The proposed method offers a robust and
efficient alternative to traditional diagnostic procedures,
reducing dependence on time-consuming laboratory tests and
enabling earlier interventions. Therefore, this work represents
a meaningful advance in clinical diagnostics by introducing a
promising intelligent system that can be integrated into real-
world medical applications and extended to the diagnosis of
other diseases in future research.

Moreover, the proposed computational architecture
demonstrates high technological transferability. Its modular
and lightweight design allows easy adaptation to different
hardware platforms, including embedded systems and portable
diagnostic devices. This feature supports the implementation
of the method in resource-limited healthcare environments,
such as rural clinics or mobile units, expanding the
technology’s reach and promoting greater equity in access to
quality diagnostics.

However, some limitations must be considered. The
system was evaluated using a controlled dataset, which may
not fully reflect the variability found in real-world clinical
environments. Additionally, adapting the method to different
diseases may require specific tuning of the NSA parameters.
As future directions, we propose large-scale clinical
validation, integration with portable monitoring devices, and
the combined use of other artificial intelligence techniques to
enhance the system’s sensitivity and generalizability across
diverse medical contexts.
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